ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() Григорий Александрович Гальперин - российский и американский математик, автор популярных книг "Московские математические олимпиады" и "Математические бильярды". |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи
В треугольнике ABC из вершины A проведена прямая,
пересекающая сторону BC в точке D, лежащей между точками B и C,
причём
BD : BC =
Основания трапеции равны 1,8 и 1,2; боковые стороны, равные 1,5 и 1,2, продолжены до взаимного пересечения. Сторона BC параллелограмма ABCD вдвое больше стороны AB.
Биссектрисы углов A и B пересекают прямую CD в точках M и N, причём MN = 12. В трапеции большее основание равно 5, одна из боковых сторон равна 3. Известно, что одна из диагоналей перпендикулярна заданной боковой стороне, а другая делит угол между заданной боковой стороной и основанием пополам. Найдите площадь трапеции. Укажите какое-нибудь целое положительное n, при котором
На стороне AB треугольника ABC между точками A и B взята
точка D, причём
AD : AB =
Сколько цифр имеет число 2100? а) В треугольниках ABC и A'B'C' равны стороны AC и A'C', углы при вершинах B и B' и биссектрисы углов B и B'. В параллелограмме ABCD на стороне AB взята точка M, причём
AB = 3AM. N – точка пересечения прямых AC и DM. |
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 82]
Дан отрезок длины
Имеется выпуклый многогранник со 100 рёбрами. Все его вершины срезали плоскостями-ножами близко от самих вершин (то есть так, чтобы плоскости-ножи не пересекались друг с другом внутри или на границе многогранника). Найдите у полученного многогранника
a) Написаны 2007 натуральных чисел, больших 1. Докажите, что удастся зачеркнуть одно число так, чтобы произведение оставшихся можно было представить в виде разности квадратов двух натуральных чисел. б) Написаны 2007 натуральных чисел, больших 1, одно из которых равно 2006. Оказалось, что есть только одно такое число среди написанных, что произведение оставшихся представляется в виде разности квадратов двух натуральных чисел. Докажите, что это число – 2006.
Имеется железная гиря в 6 кг, сахар и невесомые пакеты в неограниченном количестве, а также нестандартные весы с двумя чашами: весы находятся в равновесии, если грузы на левой и правой чашах относятся как 3 : 4. За одно взвешивание можно положить на весы любые уже имеющиеся грузы и добавить на одну из чаш пакет с таким количеством сахара, чтобы чаши уравновесились (такие пакеты с сахаром можно использовать при дальнейших взвешиваниях). Удастся ли отмерить 1 кг сахара?
Отрезки $AA', BB'$ и $CC'$ с концами на сторонах остроугольного треугольника $ABC$ пересекаются в точке $P$ внутри треугольника. На каждом из этих отрезков как на диаметре построена окружность, в которой перпендикулярно этому диаметру проведена хорда через точку $P$. Оказалось, что три проведённые хорды имеют одинаковую длину. Докажите, что $P$ – точка пересечения высот треугольника $ABC$.
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 82]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке