ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Дан правильный треугольник ABC. На стороне AB отмечена точка K, на стороне BC — точки L и M (L лежит на отрезке BM) так, что KL = KM, BL = 2, AK = 3. Найдите CM. В остроугольном треугольнике $ABC$ проведены высоты $AA_1$ и $CC_1$. Окружность, описанная вокруг треугольника $A_1BC_1$, проходит через точку $M$ пересечения медиан. Найдите все возможные значения величины угла $B$. Хозяйка испекла для гостей пирог. За столом может оказаться либо p человек, либо q (p и q взаимно просты). На какое минимальное количество кусков (не обязательно равных) нужно заранее разрезать пирог, чтобы в любом случае его можно было раздать поровну? Существует ли в пространстве замкнутая самопересекающаяся ломаная, которая пересекает каждое свое звено ровно один раз, причём в его середине? Дан фиксированный треугольник ABC. Пусть D – произвольная точка в плоскости треугольника, не совпадающая с его вершинами. Окружность с центром в D, проходящая через A, пересекает вторично прямые AB и AC в точках Ab и Ac соответственно. Аналогично определяются точки Ba, Bc, Ca и Cb. Точку D назовём хорошей, если точки Ab, Ac, Ba, Bc, Ca и Cb лежат на одной окружности. Ортогональной проекцией тетраэдра на плоскость одной из его граней является трапеция площади 1. Может ли ортогональной проекцией этого тетраэдра на плоскость другой его грани быть квадрат площади 1? Собрались на состязанье йог, бульдог и носорог. Один из них ловчее всех и всегда лжёт, другой — смелее всех и всегда говорит правду, третий — быстрее всех, может говорить и ложь, и правду. Они сделали три заявления.
Сколько существует таких пар натуральных чисел (m, n), каждое из которых не превышает 1000, что |
Страница: << 1 2 3 4 5 [Всего задач: 25]
Сколько существует таких пар натуральных чисел (m, n), каждое из которых не превышает 1000, что
Из центра O правильного n-угольника A1A2...An проведены n векторов в его вершины. Даны такие числа a1, a2, ..., an, что
Хозяйка испекла для гостей пирог. За столом может оказаться либо p человек, либо q (p и q взаимно просты). На какое минимальное количество кусков (не обязательно равных) нужно заранее разрезать пирог, чтобы в любом случае его можно было раздать поровну?
Круг разбит на n секторов, в некоторых секторах стоят фишки – всего фишек n + 1. Затем позиция подвергается преобразованиям. Один шаг преобразования состоит в следующем: берутся какие-нибудь две фишки, стоящие в одном секторе, и переставляются в разные стороны в соседние секторы. Докажите, что через некоторое число шагов не менее половины секторов будет занято.
У входа в пещеру стоит барабан, на нём по кругу через равные промежутки расположены N одинаковых с виду бочонков. Внутри каждого бочонка лежит селёдка – либо головой вверх, либо головой вниз, но где как – не видно (бочонки закрыты). За один ход Али-Баба выбирает любой набор бочонков (от 1 до N штук) и переворачивает их все. После этого барабан приходит во вращение, а когда останавливается, Али-Баба не может определить, какие бочонки перевёрнуты. Пещера откроется, если во время вращения барабана все N селёдок будут расположены головами в одну сторону. При каких N Али-Баба сможет открыть пещеру?
Страница: << 1 2 3 4 5 [Всего задач: 25]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке