ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Даны числа а1, ..., аn. d = MAX { di | 1 ≤ i ≤ n } а) Доказать, что для любых x1 ≤ x2 ≤ ... ≤ xn выполняется неравенство б) Доказать, что равенство в (*) выполняется для некоторых {xi} i=1...n Через точку внутри вписанного четырёхугольника провели две прямые, делящие его на четыре части. Три из этих частей – вписанные четырёхугольники, причем радиусы описанных вокруг них окружностей равны. Докажите, что четвёртая часть – четырёхугольник, вписанный в окружность того же радиуса. Рассматриваются все треугольники АВС, у которых положение вершин В и С зафиксировано, а вершина А перемещается в плоскости треугольника так, что медиана СМ имеет одну и ту же длину. По какой траектории движется точка А? Доказать, что число n5 – 5n³ + 4n делится на 120 при любом натуральном n. На складе лежало несколько целых головок сыра. Ночью пришли крысы и съели 10 головок, причём все ели поровну. У нескольких крыс от обжорства заболели животы. Остальные семь крыс следующей ночью доели оставшийся сыр, но каждая крыса смогла съесть вдвое меньше сыра, чем накануне. Сколько сыра было на складе первоначально? Рассмотрим 5 точек A, B, C, D, E так что ABCD - параллелограмм, BCED лежат на одной окружности. A ∈ l, прямая lпересекает внутренность [DC] в F и прямую BC в G. Пусть EF = EG = EC.
Доказать, что l - биссектриса угла DAB. Доказать, что 7 + 7² + ... + 74K, где K – любое натуральное число, делится на 400. Каждой стороне b выпуклого многоугольника P поставлена в соответствие наибольшая из площадей треугольников, содержащихся в P, одна из сторон которых совпадает с b. Докажите, что сумма площадей, соответствующих всем сторонам P, не меньше удвоенной площади многоугольника P. У Кая имеется кусок шахматной доски 7×7 клеток из драгоценного хрусталя и алмазный нож. Кай хочет, не теряя материала и проводя разрезы только по краям клеток, распилить доску на 6 частей так, чтобы из них сделать три новых квадрата, все разных размеров. Как это сделать? В трапеции ABCD боковая сторона AB равна меньшему основанию BC, а диагональ AC равна основанию AD. Прямая, проходящая через вершину B параллельно AC, пересекает прямую DC в точке M. Докажите, что AM – биссектриса угла BAC. Снежная Королева предпочитает идеальные фигуры, поэтому она так любит квадраты. Она дала Каю крест (см. рисунок справа), чтобы тот разделил его на равные части и собрал из них квадрат. Как это можно сделать?
На параболе y = x² выбраны четыре точки A, B, C, D так, что прямые AB и CD пересекаются на оси ординат.
Доказать, что существует линия длины Два взвешивания. Имеется 7 внешне одинаковых монет, среди которых 5 настоящих (все — одинакового веса) и 2 фальшивых (одинакового между собой веса, но легче настоящих). Как с помощью двух взвешиваний на чашечных весах без гирь выделить 3 настоящие монеты? Прямая a пересекает плоскость α. Известно, что в этой плоскости найдутся 2011 прямых, равноудаленных от a и не пересекающих a. На стороне AB прямоугольника ABCD выбрана точка M . Через эту точку проведён перпендикуляр к прямой CM , который пересекает сторону AD в точке E . Точка P — основание перпендикуляра, опущенного из точки M на прямую CE . Найдите угол APB . |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 49]
На стороне AB прямоугольника ABCD выбрана точка M . Через эту точку проведён перпендикуляр к прямой CM , который пересекает сторону AD в точке E . Точка P — основание перпендикуляра, опущенного из точки M на прямую CE . Найдите угол APB .
Прямая a пересекает плоскость α. Известно, что в этой плоскости найдутся 2011 прямых, равноудаленных от a и не пересекающих a.
Точка M – середина основания AC остроугольного равнобедренного треугольника ABC. Точка N симметрична M относительно BC. Прямая, параллельная AC и проходящая через точку N, пересекает сторону AB в точке K. Найдите угол AKC.
Петя вырезал из пластмассы неравносторонний треугольник. Покажите, каким образом можно, пользуясь только этим инструментом как шаблоном, построить биссектрису какого-нибудь угла треугольника, равного вырезанному.
Мальвина попросила Буратино выписать все девятизначные числа, составленные из различных цифр. Буратино забыл, как пишется цифра 7, поэтому записал только те девятизначные числа, в которых этой цифры нет. Затем Мальвина предложила ему вычеркнуть из каждого числа по шесть цифр так, чтобы оставшееся трёхзначное число было простым. Буратино тут же заявил, что это возможно не для всех записанных чисел. Прав ли он?
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 49]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке