ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Канель-Белов А.Я.

Алексей Яковлевич Канель-Белов (род. 1963) - известный российский математик, педагог и составитель олимпиадных задач. Доктор физико-математических наук, профессор МИОО и Бар-Иланского университета.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 101]      



Задача 65409

Темы:   [ Свойства симметрий и осей симметрии ]
[ Разбиения на пары и группы; биекции ]
[ Инварианты ]
[ Произвольные многоугольники ]
Сложность: 4
Классы: 9,10,11

Имеется бильярдный стол в виде многоугольника (не обязательно выпуклого), у которого все углы составляют целое число градусов, а угол A – в точности 1°. В вершинах находятся точечные лузы, попав в которые шар проваливается. Из вершины A вылетает точечный шар и движется внутри многоугольника, отражаясь от сторон по закону "угол падения равен углу отражения". Докажите, что он никогда не вернётся в вершину A.

Прислать комментарий     Решение

Задача 67026

Темы:   [ Теорема Безу. Разложение на множители ]
[ Многочлен n-й степени имеет не более n корней ]
[ Теорема Виета ]
Сложность: 4
Классы: 9,10,11

Дан многочлен степени 2022 с целыми коэффициентами и со старшим коэффициентом 1. Какое наибольшее число корней он может иметь на интервале  (0, 1)?
Прислать комментарий     Решение


Задача 86110

Темы:   [ НОД и НОК. Взаимная простота ]
[ Периодичность и непериодичность ]
Сложность: 4
Классы: 9

На окружности расставлено n цифр, отличных от 0. Сеня и Женя переписали себе в тетрадки  n – 1  цифру, читая их по часовой стрелке. Оказалось, что хотя они начали с разных мест, записанные ими (n–1)-значные числа совпали. Докажите, что окружность можно разрезать на несколько дуг так, чтобы записанные на дугах цифры образовывали одинаковые числа.

Прислать комментарий     Решение

Задача 98202

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Выпуклые многоугольники ]
[ Средние величины ]
[ Сумма внутренних и внешних углов многоугольника ]
[ Доказательство от противного ]
[ Формула Эйлера. Эйлерова характеристика ]
Сложность: 4
Классы: 8,9,10

Выпуклый 1993-угольник разрезан на выпуклые семиугольники.
Докажите, что найдутся четыре соседние вершины 1993-угольника, принадлежащие одному семиугольнику.
(Вершина семиугольника не может лежать внутри стороны 1993-угольника.)

Прислать комментарий     Решение

Задача 98258

Темы:   [ Наглядная геометрия в пространстве ]
[ Прямоугольные параллелепипеды ]
[ Примеры и контрпримеры. Конструкции ]
[ Малые шевеления ]
Сложность: 4
Классы: 8,9

Может ли случиться, что шесть попарно непересекающихся параллелепипедов расположены в пространстве так, что из некоторой им не принадлежащей точки пространства не видно ни одной из их вершин? (Параллелепипеды непрозрачны.)

 
Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 101]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .