Страница:
<< 6 7 8 9
10 11 12 >> [Всего задач: 101]
|
|
Сложность: 4 Классы: 9,10,11
|
Имеется бильярдный стол в виде многоугольника (не обязательно выпуклого), у которого все углы составляют целое число градусов, а угол A – в точности 1°. В вершинах находятся точечные лузы, попав в которые шар проваливается. Из вершины A вылетает точечный шар и движется внутри многоугольника, отражаясь от сторон по закону "угол падения равен углу отражения". Докажите, что он никогда не вернётся в вершину A.
|
|
Сложность: 4 Классы: 9,10,11
|
Дан многочлен степени 2022 с целыми коэффициентами и со старшим коэффициентом 1. Какое наибольшее число корней он может иметь на интервале (0, 1)?
На окружности расставлено n цифр, отличных от 0. Сеня и Женя переписали себе в тетрадки n – 1 цифру, читая их по часовой стрелке. Оказалось, что хотя они начали с разных мест, записанные ими (n–1)-значные числа совпали. Докажите, что окружность можно разрезать на несколько дуг так, чтобы записанные на дугах цифры образовывали одинаковые числа.
|
|
Сложность: 4 Классы: 8,9,10
|
Выпуклый 1993-угольник разрезан на выпуклые семиугольники.
Докажите, что найдутся четыре соседние вершины 1993-угольника, принадлежащие одному семиугольнику.
(Вершина семиугольника не может лежать внутри стороны 1993-угольника.)
Может ли случиться, что шесть попарно непересекающихся параллелепипедов расположены в пространстве так, что из некоторой им не принадлежащей точки пространства не видно ни одной из их вершин? (Параллелепипеды непрозрачны.)
Страница:
<< 6 7 8 9
10 11 12 >> [Всего задач: 101]