|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Назар Хангельдыевич Агаханов (р. 1954) - доцент кафедры высшей математики МФТИ, кандидат физико-математических наук. C 1974 года член жюри Всесоюзной (в 1992 году - Межреспубликанской, c 1993 года - Всероссийской олимпиады школьников по математике). Лидер национальной команды России на международной математической олимпиаде. Председатель Консультативного совета международной математической олимпиады. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Имеется три кучи камней. Сизиф таскает по одному камню из кучи в кучу. За каждое перетаскивание он получает от Зевса количество монет, равное разности числа камней в куче, в которую он кладёт камень, и числа камней в куче, из которой он берёт камень (сам перетаскиваемый камень при этом не учитывается). Если указанная разность отрицательна, то Сизиф возвращает Зевсу соответствующую сумму. (Если Сизиф не может расплатиться, то великодушный Зевс позволяет ему совершать перетаскивание в долг.) В некоторый момент оказалось, что все камни лежат в тех же кучах, в которых лежали первоначально. Каков наибольший суммарный заработок Сизифа на этот момент? |
Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 105]
Уравнение xn + a1xn–1 + ... + an–1x + an = 0 с целыми ненулевыми коэффициентами имеет n различных целых корней.
Положительные числа x, y, z таковы, что модуль разности любых двух из них меньше 2.
По двум пересекающимся дорогам с равными постоянными скоростями движутся автомобили "Ауди" и БМВ. Оказалось, что как в 17.00, так и в 18.00 БМВ находился в два раза дальше от перекрёстка, чем "Ауди". В какое время "Ауди" мог проехать перекрёсток?
В каждую клетку бесконечной клетчатой плоскости записано одно из чисел 1, 2, 3, 4 так, что каждое число встречается хотя бы один раз. Назовём клетку правильной, если количество различных чисел, записанных в четыре соседние (по стороне) с ней клетки, равно числу, записанному в эту клетку. Могут ли все клетки плоскости оказаться правильными?
В натуральном числе A переставили цифры, получив число B.
Известно, что
Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 105] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|