ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Дан треугольник ABC. Обозначим через M середину стороны AC, а через P – середину отрезка CM. Описанная окружность треугольника ABP пересекает сторону BC во внутренней точке Q. Докажите, что ∠ABM = ∠MQP. В таблицу 2006×2006 вписаны числа 1, 2, 3, ..., 2006². На боковых сторонах AB и AC равнобедренного треугольника ABC отметили соответственно точки K и L так, что AK = CL и ∠ALK + ∠LKB = 60°. Плоскость разбита на выпуклые семиугольники единичного диаметра. Докажите, что любой круг радиуса 200 пересекает не менее миллиарда из них. На сфере отмечено пять точек, никакие три из которых не лежат на большой
окружности (большая окружность – это окружность, по которой пересекаются сфера и плоскость, проходящая через её центр). Две большие окружности, не проходящие через отмеченные точки, называются эквивалентными, если одну из них с помощью непрерывнвого перемещения по сфере можно перевести в другую так, что в процессе перемещения окружность не проходит через отмеченные точки.
На стороне AB треугольника ABC отметили точки K и L так, что KL = BC и AK = LB. Из одинаковых неравнобедренных прямоугольных треугольников составили прямоугольник (без дырок и наложений). В классе учатся 27 человек, но на урок физкультуры пришли не все. Учитель разбил пришедших на две равные по численности команды для игры в пионербол. При этом в первой команде была половина всех пришедших мальчиков и треть всех пришедших девочек, а во второй – половина всех пришедших девочек и четверть всех пришедших мальчиков. Остальные пришедшие ребята помогали судить. Сколько помощников могло быть у судьи? Аня захотела вписать в каждую клетку таблицы 5×8 по одной цифре таким образом, чтобы каждая цифра встречалась ровно в четырёх рядах. (Рядами мы считаем как столбцы, так и строчки таблицы.) Докажите, что у неё ничего не получится. Компания из нескольких друзей вела переписку так, что каждое письмо получали все, кроме отправителя. Каждый написал одно и то же количество писем, в результате чего всеми вместе было получено 440 писем. Сколько человек могло быть в этой компании? |
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 49]
Квадрат разрезали на двенадцать прямоугольных треугольников.
Иван Иванович построил сруб, квадратный в основании, и собирается покрывать его крышей. Он выбирает между двумя крышами одинаковой высоты: двускатной и четырёхскатной (см. рисунки). На какую из этих крыш понадобится больше жести?
Одуванчик утром распускается, три дня цветет жёлтым, на четвёртый день утром становится белым, а к вечеру пятого дня облетает. В понедельник днем на поляне было 20 жёлтых и 14 белых одуванчиков, а в среду – 15 жёлтых и 11 белых. Сколько белых одуванчиков будет на поляне в субботу?
Компания из нескольких друзей вела переписку так, что каждое письмо получали все, кроме отправителя. Каждый написал одно и то же количество писем, в результате чего всеми вместе было получено 440 писем. Сколько человек могло быть в этой компании?
Мария Ивановна покупает 16 шариков для Последнего звонка. В магазине есть шарики трёх цветов: синего, красного и зелёного. Сколько существует вариантов различных покупок 16 шариков, если Мария Ивановна хочет, чтобы шарики каждого цвета составляли не менее четверти от количества всех шариков?
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 49]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке