Страница:
<< 5 6 7 8
9 10 11 >> [Всего задач: 64]
Биссектрисы AA1 и CC1 прямоугольного треугольника ABC (∠B = 90°) пересекаются в точке I. Прямая, проходящая через точку C1 и перпендикулярная прямой AA1, пересекает прямую, проходящую через A1 и перпендикулярную CC1, в точке K.
Докажите, что середина отрезка KI лежит на отрезке AC.
Две окружности с центрами O1 и O2 пересекаются в точках A и B. Биссектриса угла O1AO2 повторно пересекает окружности в точках C и D.
Докажите, что центр O описанной окружности треугольника CBD равноудалён от точек O1 и O2.
Вневписанная окружность, соответствующая вершине A прямоугольного треугольника ABC (∠B = 90°), касается продолжений сторон AB, AC в точках A1, A2 соответственно; аналогично определим точки C1, C2. Докажите, что перпендикуляры, опущенные из точек A, B, C на прямые C1C2, A1C1, A1A2 соответственно, пересекаются в одной точке.
|
|
Сложность: 4- Классы: 8,9,10
|
Окружности ω1 и ω2, касающиеся внешним образом в точке L, вписаны в угол BAC. Окружность ω1 касается луча AB в точке E, а окружность ω2 – луча AC в точке M. Прямая EL пересекает повторно окружность ω2 в точке Q. Докажите, что MQ || AL.
|
|
Сложность: 4- Классы: 9,10,11
|
На окружности ω c центром O фиксированы точки A и C. Точка B движется по дуге AC. Точка P – фиксированная точка хорды AC. Прямая, проходящая через P параллельно AO, пересекает прямую BA в точке A1; прямая, проходящая через P параллельно CO, пересекает прямую BC в точке C1. Докажите, что центр описанной окружности треугольника A1BC1 движется по прямой.
Страница:
<< 5 6 7 8
9 10 11 >> [Всего задач: 64]