ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Кноп К.А.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 1 2 3 4 5 [Всего задач: 24]      



Задача 115987

Темы:   [ Процессы и операции ]
[ Арифметика остатков (прочее) ]
[ Четность перестановки ]
[ Кооперативные алгоритмы ]
Сложность: 5
Классы: 8,9,10,11

Для прохождения теста тысячу мудрецов выстраивают в колонну. Из колпаков с номерами от 1 до 1001 один прячут, а остальные в случайном порядке надевают на мудрецов. Каждый видит только номера на колпаках всех впереди стоящих. Далее мудрецы по порядку от заднего к переднему называют вслух целые числа. Каждое число должно быть от 1 до 1001, причём нельзя называть то, что уже было сказано. Результат теста – число мудрецов, назвавших номер своего колпака. Мудрецы заранее знали условия теста и могли договориться, как действовать.
  а) Могут ли они гарантировать результат более 500?
  б) Могут ли они гарантировать результат не менее 999?

Прислать комментарий     Решение

Задача 116637

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Шахматная раскраска ]
[ Комбинаторная геометрия (прочее) ]
[ Четность и нечетность ]
[ Доказательство от противного ]
Сложность: 5
Классы: 8,9,10

Автор: Кноп К.А.

В некоторых клетках доски 100×100 стоит по фишке. Назовём клетку красивой, если в соседних с ней по стороне клетках стоит чётное число фишек.
Может ли ровно одна клетка доски быть красивой?

Прислать комментарий     Решение

Задача 116730

Темы:   [ Процессы и операции ]
[ Индукция (прочее) ]
[ Доказательство от противного ]
Сложность: 5
Классы: 10,11

Автор: Кноп К.А.

У Кости была кучка из 100 камешков. Каждым ходом он делил какую-то из кучек на две меньших, пока у него в итоге не оказалось
100 кучек по одному камешку. Докажите, что
  а) в какой-то момент в каких-то 30 кучках было в сумме ровно 60 камешков;
  б) в какой-то момент в каких-то 20 кучках было в сумме ровно 60 камешков;
  в) Костя мог действовать так, чтобы ни в какой момент не нашлось 19 кучек, в которых в сумме ровно 60 камешков.

Прислать комментарий     Решение

Задача 111884

Темы:   [ Взвешивания ]
[ Индукция ]
Сложность: 7-
Классы: 8,9,10,11

Автор: Кноп К.А.

В нашем распоряжении имеются 32k неотличимых по виду монет, одна из которых фальшивая– она весит чуть легче настоящей. Кроме того, у нас есть трое двухчашечных весов. Известно, что двое весов исправны, а одни– сломаны (показываемый ими исход взвешивания никак не связан с весом положенных на них монет, т.е. может быть как верным, так и искаженным в любую сторону, причем на разных взвешиваниях– искаженным по-разному). При этом неизвестно, какие именно весы исправны, а какие сломаны. Как определить фальшивую монету за 3k + 1 взвешиваний?
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .