Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 33]
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Через точку внутри треугольника провели три чевианы. Оказалось, что длины шести отрезков, на которые они разбивают стороны треугольника, образуют в каком-то порядке геометрическую прогрессию. Докажите, что длины чевиан тоже образуют геометрическую прогрессию.
|
|
Сложность: 3+ Классы: 9,10,11
|
Пусть $A_1$, $B_1$, $C_1$ – середины сторон $BC$, $AC$ и $AB$ треугольника $ABC$, $K$ – основание высоты, проведенной из вершины $A$, а $L$ – точка касания вписанной окружности $\gamma$ со стороной $BC$. Описанные окружности треугольников $LKB_1$ и $A_1LC_1$ вторично пересекают прямую $B_1C_1$ в точках $X$ и $Y$ соответственно. Окружность $\gamma$ пересекает эту прямую в точках $Z$ и $T$. Докажите, что $XZ = YT$.
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Стороны $AB$, $BC$, $CD$ и $DA$ четырехугольника $ABCD$ касаются окружности с центром $I$ в точках $K$, $L$, $M$ и $N$ соответственно. На прямой $AI$ выбрана произвольная точка $P$. Прямая $PK$ пересекает прямую $BI$ в точке $Q$. Прямая $QL$ пересекает прямую $CI$ в точке $R$. Прямая $RM$ пересекает прямую $DI$ в точке $S$. Докажите, что точки $P$, $N$ и $S$ лежат на одной прямой.
Дан неравнобедренный треугольник ABC. Точка O – центр его описанной окружности, а точка K – центр описанной окружности ω треугольника BCO. Высота треугольника ABC, проведенная из точки A, пересекает окружность ω в точке P. Прямая PK пересекает описанную окружность треугольника ABC в точках E и F. Докажите, что один из отрезков EP и FP равен отрезку PA.
|
|
Сложность: 4- Классы: 9,10
|
Пусть A1 и C1 – точки касания вписанной окружности со сторонами BC и AB соответственно, а A' и C' – точки касания вневписанной окружности треугольника, вписанной в угол B, с продолжениями сторон BC и AB соответственно. Докажите, что ортоцентр H треугольника ABC лежит на A1C1 тогда и только тогда, когда прямые A'C1 и BA перпендикулярны.
Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 33]