Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Бакаев Е.В.

Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

Дан правильный треугольник ABC. На стороне AB отмечена точка K, на стороне BC — точки L и M (L лежит на отрезке BM) так, что KL = KM, BL = 2, AK = 3. Найдите CM.

Вниз   Решение


В остроугольном треугольнике $ABC$ проведены высоты $AA_1$ и $CC_1$. Окружность, описанная вокруг треугольника $A_1BC_1$, проходит через точку $M$ пересечения медиан. Найдите все возможные значения величины угла $B$.

ВверхВниз   Решение


Автор: Фомин Д.

Хозяйка испекла для гостей пирог. За столом может оказаться либо p человек, либо q (p и q взаимно просты). На какое минимальное количество кусков (не обязательно равных) нужно заранее разрезать пирог, чтобы в любом случае его можно было раздать поровну?

ВверхВниз   Решение


Существует ли в пространстве замкнутая самопересекающаяся ломаная, которая пересекает каждое свое звено ровно один раз, причём в его середине?

ВверхВниз   Решение


Дан фиксированный треугольник ABC. Пусть D – произвольная точка в плоскости треугольника, не совпадающая с его вершинами. Окружность с центром в D, проходящая через A, пересекает вторично прямые AB и AC в точках Ab и Ac соответственно. Аналогично определяются точки Ba, Bc, Ca и Cb. Точку D назовём хорошей, если точки Ab, Ac, Ba, Bc, Ca и Cb лежат на одной окружности.
Сколько может оказаться точек, хороших для данного треугольника ABC?

ВверхВниз   Решение


Ортогональной проекцией тетраэдра на плоскость одной из его граней является трапеция площади 1. Может ли ортогональной проекцией этого тетраэдра на плоскость другой его грани быть квадрат площади 1?

ВверхВниз   Решение


Собрались на состязанье йог, бульдог и носорог. Один из них ловчее всех и всегда лжёт, другой — смелее всех и всегда говорит правду, третий — быстрее всех, может говорить и ложь, и правду. Они сделали три заявления.
Йог: Самый быстрый смелее меня.
Бульдог: Я быстрее самого ловкого.
Носорог: Я ловчее самого смелого.
Кто из них самый медленный?

ВверхВниз   Решение


Автор: Фомин Д.

Сколько существует таких пар натуральных чисел  (m, n),  каждое из которых не превышает 1000, что  

ВверхВниз   Решение


В треугольнике $ABC$ угол $A$ равен $120^\circ$. Точка $I$ – центр вписанной окружности, $M$ – середина $BC$. Прямая, проходящая через $M$ и параллельная $AI$, пересекает окружность с диаметром $BC$ в точках $E$ и $F$ (точки $A$ и $E$ лежат в одной полуплоскости относительно прямой $BC$). Прямая, проходящая через $E$ и перпендикулярная $FI$, пересекает прямые $AB$ и $AC$ в точках $P$ и $Q$. Найдите угол $PIQ$.

ВверхВниз   Решение


Можно ли внутри правильного пятиугольника разместить отрезок, который из всех вершин виден под одним и тем же углом?

Вверх   Решение

Все задачи автора

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 151]      



Задача 66548

Тема:   [ Правильный (равносторонний) треугольник ]
Сложность: 3
Классы: 6,7

Дан правильный треугольник ABC. На стороне AB отмечена точка K, на стороне BC — точки L и M (L лежит на отрезке BM) так, что KL = KM, BL = 2, AK = 3. Найдите CM.

Прислать комментарий     Решение


Задача 66716

Темы:   [ Пятиугольники ]
[ Вписанные и описанные окружности ]
[ Отрезок, видимый из двух точек под одним углом ]
Сложность: 3
Классы: 8,9,10,11

Можно ли внутри правильного пятиугольника разместить отрезок, который из всех вершин виден под одним и тем же углом?

Прислать комментарий     Решение

Задача 66777

Темы:   [ Замечательные точки и линии в треугольнике (прочее) ]
[ Тангенсы и котангенсы углов треугольника ]
Сложность: 3
Классы: 8,9,10,11

В остроугольном треугольнике $ABC$ $A_M$ – середина стороны $BC$, $A_H$ – основание высоты, опущенной на эту сторону. Аналогично определяются точки $B_M$, $B_H$, $C_M$, $C_H$. Докажите, что одно из отношений $A_MA_H:A_HA$, $B_MB_H:B_HB$, $C_MC_H:C_HC$ равно сумме двух других.
Прислать комментарий     Решение


Задача 66819

Темы:   [ Вспомогательная раскраска (прочее) ]
[ Четность и нечетность ]
[ Теория алгоритмов (прочее) ]
[ Оценка + пример ]
Сложность: 3
Классы: 8,9,10,11

В каждой клетке полоски длины 100 стоит по фишке. Можно за 1 рубль поменять местами любые две соседние фишки, а также можно бесплатно поменять местами любые две фишки, между которыми стоят ровно три фишки. За какое наименьшее количество рублей можно переставить фишки в обратном порядке?
Прислать комментарий     Решение


Задача 66823

Темы:   [ Пятиугольники ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Биссектриса угла ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3
Классы: 8,9,10,11

Дан выпуклый пятиугольник $ABCDE$, в котором  AE || CD  и  $AB = BC$.  Биссектрисы его углов $A$ и $C$ пересекаются в точке $K$. Докажите, что  BK || AE.

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 151]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .