Страница:
<< 13 14 15 16
17 18 19 >> [Всего задач: 149]
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Даны две монеты радиуса 1 см, две монеты радиуса 2 см и две монеты радиуса 3 см. Можно положить две из них на стол так, чтобы они касались друг друга, и добавлять монеты по одной так, чтобы очередная касалась хотя бы двух уже лежащих. Новую монету нельзя класть на старую. Можно ли положить несколько монет так, чтобы центры каких-то трёх монет оказались на одной прямой?
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Дан правильный шестиугольник с центром $O$. Провели шесть равных окружностей с центрами в вершинах шестиугольника так, что точка $O$ находится внутри окружностей. Угол величины α с вершиной $O$ высекает на этих окружностях шесть дуг. Докажите, что суммарная величина этих дуг равна 6α.
|
|
Сложность: 3+ Классы: 8,9,10,11
|
На гипотенузе $AB$ прямоугольного треугольника $ABC$ отметили точку $K$, а на катете $AC$ – точку $L$ так, что $AK = AC, BK = LC$. Отрезки $BL$ и $CK$ пересекаются в точке $M$. Докажите, что треугольник $CLM$ равнобедренный.
|
|
Сложность: 3+ Классы: 8,9,10
|
В квадрате $4\times4$ расставили целые числа так, что в каждом из восьми рядов (строках и столбцах) сумма чисел одна и та же. Семь чисел известны, а остальные скрыты (см. рисунок).
Можно ли по имеющимся данным восстановить
а) хотя бы одно скрытое число;
б) хотя бы два скрытых числа?
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Точка $O$ – центр описанной окружности остроугольного треугольника $ABC$, $AH$ – его высота. Точка $P$ – основание перпендикуляра, опущенного из точки $A$ на прямую $CO$. Докажите, что прямая $HP$ проходит через середину стороны $AB$.
Страница:
<< 13 14 15 16
17 18 19 >> [Всего задач: 149]