Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Полянский Н.

Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

В треугольнике $ABC$ угол $A$ равен $120^\circ$. Точка $I$ – центр вписанной окружности, $M$ – середина $BC$. Прямая, проходящая через $M$ и параллельная $AI$, пересекает окружность с диаметром $BC$ в точках $E$ и $F$ (точки $A$ и $E$ лежат в одной полуплоскости относительно прямой $BC$). Прямая, проходящая через $E$ и перпендикулярная $FI$, пересекает прямые $AB$ и $AC$ в точках $P$ и $Q$. Найдите угол $PIQ$.

Вниз   Решение


Автор: Астахов В.

Дано натуральное число  n > 6.  Рассматриваются натуральные числа, лежащие в промежутке  (n(n – 1), n²)  и взаимно простые с n(n – 1).
Докажите, что наибольший общий делитель всех таких чисел равен 1.

ВверхВниз   Решение


Автор: Герко А.А.

В соревнованиях по n-борью участвуют 2n человек. Для каждого спортсмена известна его сила в каждом из видов программы. Соревнования проходят следующим образом: сначала все спортсмены участвуют в первом виде программы и лучшая половина из них выходит в следующий круг. Эта половина принимает участие в следующем виде и половина из них выходит в следующий круг, и т.д., пока в n-м виде программы не будет определен победитель. Назовем спортсмена возможным победителем, если можно так расставить виды спорта в программе, что он станет победителем.
  а) Докажите, что может так случиться, что хотя бы половина спортсменов является возможными победителями.
  б) Докажите, что число возможных победителей не превосходит  2nn.
  в) Докажите, что может так случиться, что возможных победителей ровно  2nn.

ВверхВниз   Решение


На складах двух магазинов хранится пшено: на первом складе на 16 тонн больше, чем на втором. Каждую ночь ровно в полночь владелец каждого магазина ворует у своего конкурента четверть имеющегося на его складе пшена и перетаскивает на свой склад. Через 10 ночей воришек поймали. На каком складе в момент их поимки было больше пшена и на сколько?

ВверхВниз   Решение


На окружности отметили n точек, разбивающие её на n дуг. Окружность повернули вокруг центра на угол k/n (при некотором натуральном k), в результате чего отмеченные точки перешли в n новых точек, разбивающих окружность на n новых дуг.
Докажите, что найдётся новая дуга, которая целиком лежит в одной из старых дуг. (Считается, что концы дуги ей принадлежат.)

ВверхВниз   Решение


На клетчатую плоскость положили 2009 одинаковых квадратов, стороны которых идут по сторонам клеток. Затем отметили все клетки, которые покрыты нечётным числом квадратов. Докажите, что отмеченных клеток не меньше, чем клеток в одном квадрате.

ВверхВниз   Решение


Петя и Вася играют в игру на клетчатой доске n×n (где  n > 1).  Изначально вся доска белая, за исключением угловой клетки – она чёрная, и в ней стоит ладья. Игроки ходят по очереди. Каждым ходом игрок передвигает ладью по горизонтали или вертикали, при этом все клетки, через которые ладья перемещается (включая ту, в которую она попадает), перекрашиваются в чёрный цвет. Ладья не должна передвигаться через чёрные клетки или останавливаться на них. Проигрывает тот, кто не может сделать ход; первым ходит Петя. Кто выиграет при правильной игре?

Вверх   Решение

Все задачи автора

Страница: 1 [Всего задач: 3]      



Задача 64778

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Теория игр (прочее) ]
[ Доказательство от противного ]
[ Принцип крайнего (прочее) ]
Сложность: 4
Классы: 10,11

Петя и Вася играют в игру на клетчатой доске n×n (где  n > 1).  Изначально вся доска белая, за исключением угловой клетки – она чёрная, и в ней стоит ладья. Игроки ходят по очереди. Каждым ходом игрок передвигает ладью по горизонтали или вертикали, при этом все клетки, через которые ладья перемещается (включая ту, в которую она попадает), перекрашиваются в чёрный цвет. Ладья не должна передвигаться через чёрные клетки или останавливаться на них. Проигрывает тот, кто не может сделать ход; первым ходит Петя. Кто выиграет при правильной игре?

Прислать комментарий     Решение

Задача 64884

Темы:   [ Описанные четырехугольники ]
[ Три прямые, пересекающиеся в одной точке ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Вписанные и описанные окружности ]
[ Инверсия помогает решить задачу ]
[ Вспомогательная окружность ]
[ Радикальная ось ]
Сложность: 5-
Классы: 10,11

В четырёхугольнике ABCD вписанная окружность ω касается сторон BC и DA в точках E и F соответственно. Оказалось, что прямые AB, FE и CD пересекаются в одной точке S. Описанные окружности Ω и Ω1 треугольников AED и BFC, вторично пересекают окружность ω в точках E1 и F1. Докажите, что прямые EF и E1F1 параллельны.

Прислать комментарий     Решение

Задача 66659

Темы:   [ Три прямые, пересекающиеся в одной точке ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 5
Классы: 10,11

На сторонах $AB,BC,CA$ треугольника $ABC$ выбраны точки $C_1,A_1,B_1$ так, что отрезки $AA_1,BB_1,CC_1$ пересекаются в одной точке. Лучи $B_1A_1$ и $B_1C1$ пересекают описанную окружность в точках $A_2$ и $C_2$. Докажите, что точки $A,C,$ точка пересечения $A_2C_2$ с $BB_1$ и середина $A_2C_2$ лежат на одной окружности.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 3]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .