Processing math: 100%
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Кухарчук И.

Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Выпуклый многоугольник разрезан непересекающимися диагоналями на равнобедренные треугольники.
Докажите, что в этом многоугольнике найдутся две равные стороны.

Вниз   Решение


Разрежьте крест, составленный из пяти одинаковых квадратов, на три многоугольника, равных по площади и периметру.

ВверхВниз   Решение


Автор: Ивлев Ф.

Вписанная в треугольник ABC окружность касается сторон BC, CA, AB в точках A', B', C' соответственно. Перпендикуляр, опущенный из центра I этой окружности на медиану CM, пересекает прямую A'B' в точке K. Докажите, что  CK || AB.

ВверхВниз   Решение


В треугольнике ABC I – центр вписанной окружности, D – произвольная точка на стороне BC, серединный перпендикуляр к отрезку AD пресекает прямые BI и CI в точках F и E соответственно. Найдите геометрическое место ортоцентров треугольников EIF.

Вверх   Решение

Все задачи автора

Страница: << 1 2 3 4 5 >> [Всего задач: 22]      



Задача 66673

Темы:   [ ГМТ - прямая или отрезок ]
[ Ортоцентр и ортотреугольник ]
[ Вписанные и описанные окружности ]
[ Вписанные четырехугольники ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 4
Классы: 8,9

В треугольнике ABC I – центр вписанной окружности, D – произвольная точка на стороне BC, серединный перпендикуляр к отрезку AD пресекает прямые BI и CI в точках F и E соответственно. Найдите геометрическое место ортоцентров треугольников EIF.
Прислать комментарий     Решение


Задача 66942

Темы:   [ ГМТ (прочее) ]
[ Касающиеся окружности ]
[ Общая касательная к двум окружностям ]
[ Гомотетия (ГМТ) ]
[ Признаки и свойства касательной ]
Сложность: 4
Классы: 8,9,10,11

В угол вписаны три окружности Γ1, Γ2, Γ3 (радиус Γ1 наименьший, а радиус Γ3 наибольший), притом Γ2 касается Γ1 и Γ3 в точках A и B соответственно. Пусть l – касательная в точке A к Γ1. Рассмотрим все окружности ω, касающиеся Γ1 и l. Найдите геометрическое место точек пересечения общих внутренних касательных к парам окружностей ω и Γ3.
Прислать комментарий     Решение


Задача 67237

Темы:   [ ГМТ - прямая или отрезок ]
[ Связь величины угла с длиной дуги и хорды ]
[ Соображения непрерывности ]
Сложность: 4
Классы: 8,9,10,11

Даны две окружности ω1 и ω2, пересекающиеся в точке A, и прямая a. Пусть BC – произвольная хорда окружности ω2, параллельная a, а E и F – вторые точки пересечения прямых AB и AC с ω1. Найдите геометрическое место точек пересечения прямых BC и EF.
Прислать комментарий     Решение


Задача 67297

Темы:   [ Вспомогательные подобные треугольники ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 4
Классы: 8,9,10,11

Дан треугольник ABC. Пусть I – центр его вписанной окружности, P – такая точка на стороне AB, что угол PIB прямой, Q – точка, симметричная точке I относительно вершины A. Докажите, что точки C, I, P, Q лежат на одной окружности.
Прислать комментарий     Решение


Задача 67433

Темы:   [ Окружности (прочее) ]
[ Описанные четырехугольники ]
Сложность: 4
Классы: 9,10,11

Даны две равные окружности ω1 и ω2 с центрами O1 и O2. На отрезке O1O2 взяты точки X и Y так, что O1Y=O2X. Точки A и B лежат на ω1, и прямая AB проходит через X. Точки C и D лежат на ω2, и прямая CD проходит через Y. Докажите, что существует окружность, касающаяся прямых AO1, BO1, CO2 и DO2.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 >> [Всего задач: 22]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .