ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Выпуклый многоугольник разрезан непересекающимися диагоналями на равнобедренные треугольники. Разрежьте крест, составленный из пяти одинаковых квадратов, на три многоугольника, равных по площади и периметру. Вписанная в треугольник ABC окружность касается сторон BC, CA, AB в точках A', B', C' соответственно. Перпендикуляр, опущенный из центра I этой окружности на медиану CM, пересекает прямую A'B' в точке K. Докажите, что CK || AB. В треугольнике ABC I – центр вписанной окружности, D – произвольная точка на стороне BC, серединный перпендикуляр к отрезку AD пресекает прямые BI и CI в точках F и E соответственно. Найдите геометрическое место ортоцентров треугольников EIF. |
Страница: << 1 2 3 4 5 >> [Всего задач: 22]
В треугольнике ABC I – центр вписанной окружности, D – произвольная точка на стороне BC, серединный перпендикуляр к отрезку AD пресекает прямые BI и CI в точках F и E соответственно. Найдите геометрическое место ортоцентров треугольников EIF.
В угол вписаны три окружности Γ1, Γ2, Γ3 (радиус Γ1 наименьший, а радиус Γ3 наибольший), притом Γ2 касается Γ1 и Γ3 в точках A и B соответственно. Пусть l – касательная в точке A к Γ1. Рассмотрим все окружности ω, касающиеся Γ1 и l. Найдите геометрическое место точек пересечения общих внутренних касательных к парам окружностей ω и Γ3.
Даны две окружности ω1 и ω2, пересекающиеся в точке A, и прямая a. Пусть BC – произвольная хорда окружности ω2, параллельная a, а E и F – вторые точки пересечения прямых AB и AC с ω1. Найдите геометрическое место точек пересечения прямых BC и EF.
Дан треугольник ABC. Пусть I – центр его вписанной окружности, P – такая точка на стороне AB, что угол PIB прямой, Q – точка, симметричная точке I относительно вершины A. Докажите, что точки C, I, P, Q лежат на одной окружности.
Даны две равные окружности ω1 и ω2 с центрами O1 и O2. На отрезке O1O2 взяты точки X и Y так, что O1Y=O2X. Точки A и B лежат на ω1, и прямая AB проходит через X. Точки C и D лежат на ω2, и прямая CD проходит через Y. Докажите, что существует окружность, касающаяся прямых AO1, BO1, CO2 и DO2.
Страница: << 1 2 3 4 5 >> [Всего задач: 22]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке