Processing math: 100%
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Кухарчук И.

Фильтр
Сложность с по   Класс с по  
Выбрано 13 задач
Версия для печати
Убрать все задачи

Группа психологов разработала тест, пройдя который, каждый человек получает оценку – число Q – показатель его умственных способностей (чем больше Q, тем больше способности). За рейтинг страны принимается среднее арифметическое значений Q всех жителей этой страны.
  а) Группа граждан страны А эмигрировала в страну Б. Покажите, что при этом у обеих стран мог вырасти рейтинг.
  б) После этого группа граждан страны Б (в числе которых могут быть и бывшие эмигранты из А) эмигрировала в страну А. Возможно ли, что рейтинги обеих стран опять выросли?
  в) Группа граждан страны А эмигрировала в страну Б, а группа граждан Б – в страну В. В результате этого рейтинги каждой страны оказались выше первоначальных. После этого направление миграционных потоков изменилось на противоположное – часть жителей В переехала в Б, а часть жителей Б – в А. Оказалось, что в результате рейтинги всех трёх стран опять выросли (по сравнению с теми, которые были после первого переезда, но до начала второго). (Так, во всяком случае, утверждают информационные агентства этих стран.) Может ли такое быть (если да, то как, если нет, то почему)?

(Предполагается, что за рассматриваемое время Q граждан не изменилось, никто не умер и не родился.)

Вниз   Решение


Миша написал на доске в некотором порядке 2004 плюса и 2005 минусов. Время от времени Юра подходит к доске, стирает любые два знака и пишет вместо них один, причём если он стёр одинаковые знаки, то вместо них он пишет плюс, а если разные, то минус. После нескольких таких действий на доске остался только один знак. Какой?

ВверхВниз   Решение


В вершинах шестиугольника записаны числа 12, 1, 10, 6, 8, 3 (в таком порядке). За один ход разрешено выбрать две соседние вершины и к числам, стоящим в данных вершинах, одновременно прибавить единицу или одновременно вычесть из них единицу. Можно ли получить в итоге шесть чисел в таком порядке:
а) 14, 6, 13, 4, 5, 2; б) 6, 17, 14, 3, 15, 2?

ВверхВниз   Решение


У племени семпоальтеков было 24 слитка золота, 26 редких жемчужин и 25 стеклянных бус. У Кортеса они могут обменять слиток золота и жемчужину на одни бусы, у Монтесумы – один слиток и одни бусы на одну жемчужину, а у тотонаков – одну жемчужину и одни бусы на один золотой слиток. После долгих обменов у семпоальтеков осталось только одна вещь. Какая?

ВверхВниз   Решение


Автор: Калинин А.

Функция f(x) определена и удовлетворяет соотношению

(x-1)f()-f(x)=x

при всех x1 . Найдите все такие функции.

ВверхВниз   Решение


Имеется 120-значное число. Его первые 12 цифр переставляются всеми возможными способами. Из полученных таким образом 120-значных чисел наугад выбирают 120 чисел. Доказать, что их сумма делится на 120.

ВверхВниз   Решение


Решите уравнение  x³ + x² + x = – 1/3.

ВверхВниз   Решение


В выпуклом пятиугольнике ABCDE равны углы CAB, BCA, ECD, DEC и AEC. Докажите, что середина BD лежит на CE.

ВверхВниз   Решение


Остроугольный равнобедренный треугольник ABC  (AB = AC)  вписан в окружность с центром O. Лучи BO и CO пересекают стороны AC и AB в точках B' и C' соответственно. Через точку C' проведена прямая l, параллельная прямой AC. Докажите, что прямая l касается описанной окружности ω треугольника B'OC.

ВверхВниз   Решение


На продолжениях сторон A1A2, A2A3, ..., AnA1 правильного n-угольника (n ≥ 5) A1A2...An построить точки B1, B2, ..., Bn так, чтобы B1B2 было перпендикулярно к A1A2, B2B3 перпендикулярно к A2A3, ..., BnB1 перпендикулярно к AnA1.

ВверхВниз   Решение


Пусть высоты остроугольного треугольника ABC пересекаются в точке H. Окружность, описанная около треугольника AHC, пересекает отрезки AB и BC в точках P и Q. Прямая PQ пересекает AC в R. На прямой PH взята точка K такая, что KAC=90. Докажите, что прямая KR перпендикулярна одной из медиан треугольника ABC.

ВверхВниз   Решение


Автор: Ивлев Ф.

Пусть A1, B1, C1 – середины сторон BC, AC и AB треугольника ABC, K – основание высоты, проведенной из вершины A, а L – точка касания вписанной окружности γ со стороной BC. Описанные окружности треугольников LKB1 и A1LC1 вторично пересекают прямую B1C1 в точках X и Y соответственно. Окружность γ пересекает эту прямую в точках Z и T. Докажите, что XZ=YT.

ВверхВниз   Решение


В параллелограмме ABCD точки E и F выбираются на сторонах BC и AD соответственно так, что EF=ED=DC. Пусть M – середина BE, а MD пересекает EF в точке G. Докажите, что углы EAC и GBD равны.

Вверх   Решение

Все задачи автора

Страница: 1 2 3 4 5 >> [Всего задач: 22]      



Задача 66769

Темы:   [ Вписанные четырехугольники ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 3
Классы: 8,9,10,11

В треугольнике ABC AA1, CC1 – высоты, P – произвольная точка на стороне BC. Точка Q на прямой AB такова, что QP=PC1, а точка R на прямой AC такова, что RP=CP. Докажите, что четырехугольник QA1RA вписанный.
Прислать комментарий     Решение


Задача 66945

Темы:   [ Признаки и свойства параллелограмма ]
[ Вспомогательные равные треугольники ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 3
Классы: 8,9

В параллелограмме ABCD точки E и F выбираются на сторонах BC и AD соответственно так, что EF=ED=DC. Пусть M – середина BE, а MD пересекает EF в точке G. Докажите, что углы EAC и GBD равны.
Прислать комментарий     Решение


Задача 67110

Темы:   [ Признаки и свойства параллелограмма ]
[ Ромбы. Признаки и свойства ]
[ Симметрия помогает решить задачу ]
Сложность: 3
Классы: 7,8,9

Выпуклый четырехугольник ABCD таков, что BAD=2BCD и AB=AD. Пусть P – такая точка, что ABCP – параллелограмм. Докажите, что CP=DP.
Прислать комментарий     Решение


Задача 66937

Тема:   [ Симметрия помогает решить задачу ]
Сложность: 3
Классы: 8,9,10,11

Дан прямоугольный треугольник ABC с прямым углом C. Прямая проходящая через середину его высоты CH и вершину A пересекает CB в точке K. Пусть L – середина BC, а T – точка на отрезке AB такая, что ATK=LTB. Известно, что BC=1. Найдите периметр треугольника KTL.
Прислать комментарий     Решение


Задача 67117

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Симметрия помогает решить задачу ]
[ Вписанные и описанные многоугольники ]
Сложность: 3
Классы: 8,9,10,11

Дана равнобокая трапеция ABCD (AB=CD). На описанной около неё окружности выбирается точка P так, что отрезок CP пересекает основание AD в точке Q. Пусть L – середина QD. Докажите, что длина диагонали трапеции не превосходит суммы расстояний от середин её боковых сторон до любой точки прямой PL.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 >> [Всего задач: 22]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .