ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Общие касательные к описанной и вневписанной окружностям треугольника $ABC$ пересекают прямые $BC$, $CA$, $AB$ в точках $A_1$, $B_1$, $C_1$ и $A_2$, $B_2$, $C_2$ соответственно. Треугольник $\Delta_1$ образован прямыми $AA_1$, $BB_1$ и $CC_1$, а треугольник $\Delta_2$ – прямыми $AA_2$, $BB_2$ и $CC_2$. Докажите, что радиусы описанных окружностей этих треугольников равны. |
Страница: 1 2 >> [Всего задач: 9]
Докажите, что среди вершин выпуклого девятиугольника можно найти три, образующие тупоугольный треугольник, ни одна сторона которого не совпадает со сторонами девятиугольника.
Целое число $n$ таково, что уравнение $x^2 + y^2 + z^2 - xy - yz - zx = n$ имеет решение в целых числах.
Трапеция $ABCD$ вписана в окружность. Её основание $AB$ в 3 раза больше основания $CD$. Касательные к описанной окружности в точках $A$ и $C$ пересекаются в точке $K$. Докажите, что угол $KDA$ прямой.
Докажите, что из любого выпуклого четырёхугольника можно вырезать три его копии вдвое меньшего размера.
Плоскость разбита на части несколькими прямыми, среди которых есть непараллельные. Те части, граница которых состоит из двух лучей, закрасили. После этого проведена ещё одна прямая. Докажите, что, независимо от положения новой прямой, по обе стороны от неё найдутся закрашенные точки.
Страница: 1 2 >> [Всего задач: 9]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке