Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Рубанов И.С.

Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

На числовой оси отмечено бесконечно много точек с натуральными координатами. Когда по оси катится колесо, каждая отмеченная точка, по которой проехало колесо, оставляет на нём точечный след. Докажите, что можно выбрать такое действительное $R$, что если прокатить по оси, начиная из нуля, колесо радиуса $R$, то на каждой дуге колеса величиной в $1^\circ$ будет след хотя бы одной отмеченной точки.

Вниз   Решение


Найдите все такие натуральные n, что при некоторых взаимно простых x и y и натуральном  k > 1,  выполняется равенство  3n = xk + yk.

ВверхВниз   Решение


Грани выпуклого многогранника – подобные треугольники.
Докажите, что многогранник имеет две пары равных граней (одну пару равных граней и еще одну пару равных граней).

ВверхВниз   Решение


На доске написано n выражений вида  *x² + *x + * = 0  (n – нечетное число). Двое играют в такую игру. Ходят по очереди. За ход разрешается заменить одну из звёздочек числом, не равным нулю. Через 3n ходов получится n квадратных уравнений. Первый игрок стремится к тому, чтобы как можно большее число этих уравнений не имело корней, а второй хочет ему помешать. Какое наибольшее число уравнений, не имеющих корней, может получить первый игрок независимо от игры второго?

ВверхВниз   Решение


На прямоугольном столе разложено несколько одинаковых квадратных листов бумаги так, что их стороны параллельны краям стола (листы могут перекрываться). Докажите, что можно воткнуть несколько булавок таким образом, что каждый лист будет прикреплен к столу ровно одной булавкой.

ВверхВниз   Решение


Посреди пустого бассейна стоит квадратная платформа 50 × 50 сантиметров, расчерченная на клеточки 10× 10 см. На клетки платформы Лена ставит башенки из кубиков 10× 10× 10 см. Потом Таня включает воду.

Если высоты башенок были такие, как в таблице справа, то при уровне воды 5 см был 1 остров, при уровне воды 15 см было два острова (если острова «граничат по углу», то считаются отдельными островами), а при уровне воды 25 см все башенки оказались закрыты водой и стало 0 островов.

Придумайте, какие башенки из кубиков можно поставить, чтобы количество островов было следующим:

Уровень воды (см) 515253545
Количество островов25250

В ответе напишите в каждой клетке квадрата 5 на 5, сколько кубиков на ней стоит.

ВверхВниз   Решение


В семейном альбоме есть десять фотографий. На каждой из них изображены три человека: в центре стоит мужчина, слева от мужчины – его сын, а справа – его брат. Какое наименьшее количество различных людей может быть изображено на этих фотографиях, если известно, что все десять мужчин, стоящих в центре, различны?

ВверхВниз   Решение


Можно ли в таблицу 9×9 расставить такие натуральные числа, что одновременно выполняются следующие условия:
  1) произведения чисел, стоящих в одной строке, одинаковы для всех строк;
  2) произведения чисел, стоящих в одном столбце, одинаковы для всех столбцов;
  3) среди чисел нет равных;
  4) все числа не больше 1991?

ВверхВниз   Решение


Квадрат ABCD и окружность пересекаются в восьми точках так, что образуются четыре криволинейных треугольника:  AEF, BGH, CIJ, DKL  (EF, GH, IJ, KL – дуги окружности). Докажите, что
  а) сумма длин дуг EF и IJ равна сумме длин дуг GH и KL;
  б) сумма периметров криволинейных треугольников AEF и CIJ равна сумме периметров криволинейных треугольников BGH и DKL.

ВверхВниз   Решение


На столе лежат n спичек  (n > 1).  Двое игроков по очереди снимают их со стола. Первым ходом игрок снимает со стола любое число спичек от 1 до  n – 1,  а дальше каждый раз можно брать со стола не больше спичек, чем взял предыдущим ходом партнер. Выигрывает тот, кто взял последнюю спичку. Найдите все n, при которых первый игрок может обеспечить себе выигрыш.

Вверх   Решение

Все задачи автора

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 35]      



Задача 109816

Темы:   [ Уравнения с модулями ]
[ Монотонность и ограниченность ]
[ Последовательности функций (прочее) ]
[ Упорядочивание по возрастанию (убыванию) ]
Сложность: 4
Классы: 9,10,11

Какое наибольшее конечное число корней может иметь уравнение

|x-a1|+..+|x-a50|=|x-b1|+..+|x-b50|,

где a1 , a2 , a50 , b1 , b2 , b50 – различные числа?
Прислать комментарий     Решение

Задача 109881

Темы:   [ Свойства коэффициентов многочлена ]
[ Производная и кратные корни ]
[ Многочлен n-й степени имеет не более n корней ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4
Классы: 9,10,11

Многочлен P(x) степени n имеет n различных действительных корней. Какое наибольшее число его коэффициентов может равняться нулю?

Прислать комментарий     Решение

Задача 109902

Темы:   [ Теория игр (прочее) ]
[ Разбиения на пары и группы; биекции ]
[ Четность и нечетность ]
Сложность: 4
Классы: 7,8,9

На столе лежат n спичек  (n > 1).  Двое игроков по очереди снимают их со стола. Первым ходом игрок снимает со стола любое число спичек от 1 до  n – 1,  а дальше каждый раз можно брать со стола не больше спичек, чем взял предыдущим ходом партнер. Выигрывает тот, кто взял последнюю спичку. Найдите все n, при которых первый игрок может обеспечить себе выигрыш.

Прислать комментарий     Решение

Задача 109952

Темы:   [ Десятичная система счисления ]
[ Делимость чисел. Общие свойства ]
[ Задачи с ограничениями ]
[ Признаки делимости (прочее) ]
Сложность: 4
Классы: 8,9

Назовём десятизначное число интересным, если оно делится на 11111 и все его цифры различны. Сколько существует интересных чисел?

Прислать комментарий     Решение

Задача 110025

Темы:   [ Цилиндр ]
[ Покрытия ]
[ Шар и его части ]
Сложность: 4
Классы: 10,11

Высота и радиус основания цилиндра равны 1. Каким наименьшим числом шаров радиуса 1 можно целиком покрыть этот цилиндр?
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 35]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .