ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Для каждой пары действительных чисел a и b рассмотрим последовательность чисел pn = [2{an + b}]. Любые k подряд идущих членов этой последовательности назовем словом. Верно ли, что любой упорядоченный набор из нулей и единиц длины k будет словом последовательности, заданной некоторыми a и b при k = 4; при k = 5?

Примечание: [c] - целая часть, {c} - дробная часть числа c.

Вниз   Решение


Два угла прямоугольного листа бумаги согнули так, как показано на рисунке. Противоположная сторона при этом оказалась разделённой на три равные части. Докажите, что закрашенный треугольник – равносторонний.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 [Всего задач: 24]      



Задача 109798  (#04.5.11.5)

Темы:   [ Необычные конструкции ]
[ Монотонность и ограниченность ]
[ Ограниченность, монотонность ]
Сложность: 5+
Классы: 9,10,11

Пусть M={x1, .., x30} – множество, состоящее из 30 различных положительных чисел; An ( 1 n 30 ) – сумма всевозможных произведений различных n элементов множества M . Докажите, что если A15>A10 , то A1>1 .
Прислать комментарий     Решение


Задача 109799  (#04.5.11.6)

Темы:   [ Вспомогательные проекции ]
[ Принцип крайнего (прочее) ]
[ Системы точек и отрезков (прочее) ]
Сложность: 5+
Классы: 9,10,11

Докажите, что не существует конечного множества, содержащего более 2N ( N>3 ) попарно неколлинеарных векторов на плоскости, обладающего следующими двумя свойствами.

  1. Для любых N векторов этого множества найдется еще такой N-1 вектор из этого множества, что сумма всех 2N-1 векторов равна нулю;
  2. для любых N векторов этого множества найдутся еще такие N векторов из этого множества, что сумма всех 2N векторов равна нулю.
Прислать комментарий     Решение

Задача 109800  (#04.5.11.7)

Темы:   [ Связность и разложение на связные компоненты ]
[ Принцип крайнего (прочее) ]
[ Перебор случаев ]
Сложность: 5-
Классы: 9,10,11

В стране несколько городов, некоторые пары городов соединены двусторонними беспосадочными авиалиниями, принадлежащими k авиакомпаниям. Известно, что каждые две линии одной авиакомпании имеют общий конец. Докажите, что все города можно разбить на  k + 2  группы так, что никакие два города из одной группы не соединены авиалинией.

Прислать комментарий     Решение

Задача 109801  (#04.5.11.8)

Темы:   [ Свойства сечений ]
[ Прямоугольные параллелепипеды ]
[ Ортогональная проекция (прочее) ]
[ Длины и периметры (геометрические неравенства) ]
Сложность: 6
Классы: 10,11

В прямоугольном параллелепипеде проведено сечение, являющееся шестиугольником. Известно, что этот шестиугольник можно поместить в некоторый прямоугольник Π . Докажите, что в прямоугольник Π можно поместить одну из граней параллелепипеда.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .