ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что можно на каждом ребре произвольного тетраэдра записать по неотрицательному числу так, чтобы сумма чисел на сторонах каждой грани численно равнялась её площади.

   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 45]      



Задача 60995  (#06.072)

Темы:   [ Методы решения задач с параметром ]
[ Исследование квадратного трехчлена ]
Сложность: 3+
Классы: 8,9,10,11

При каком положительном значении p уравнения  3x² – 4px + 9 = 0  и  x² – 2px + 5 = 0  имеют общий корень?

Прислать комментарий     Решение

Задача 60996  (#06.073)

Темы:   [ Многочлены (прочее) ]
[ НОД и НОК. Взаимная простота ]
Сложность: 3+
Классы: 8,9,10

Найдите такие многочлены P(x) и Q(x), что  (x + 1)P(x) + (x4 + 1)Q(x) = 1.

Прислать комментарий     Решение

Задача 60997  (#06.074)

Темы:   [ Деление многочленов с остатком. НОД и НОК многочленов ]
[ Многочлены (прочее) ]
Сложность: 3+
Классы: 8,9,10

При помощи метода неопределенных коэффициентов найдите такие линейные функции P(x) и Q(x), чтобы выполнялось равенство
P(x)(x² – 3x + 2) + Q(x)(x² + x + 1) = 21.

Прислать комментарий     Решение

Задача 60998  (#06.075)

Тема:   [ НОД и НОК. Взаимная простота ]
Сложность: 3+
Классы: 8,9,10

Найдите такие линейные функции  P(x)  и  Q(x),  чтобы выполнялось равенство   P(x)(2x³ – 7x² + 7x – 2) + Q(x)(2x³ + x² + x – 1) = 2x – 1.

Прислать комментарий     Решение

Задача 60999  (#06.076)

Тема:   [ Обыкновенные дроби ]
Сложность: 3
Классы: 7,8,9

Сколько представлений допускает дробь    в виде суммы двух положительных дробей со знаменателями n и  n + 1?

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 45]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .