Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
года:
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Разменный автомат меняет одну монету на пять других. Можно ли с его помощью разменять металлический рубль на 26 монет?

Вниз   Решение


Диагонали AC и BD четырёхугольника ABCD пересекаются в точке O. Периметр треугольника ABC равен периметру треугольника ABD, а периметр треугольника ACD – периметру треугольника BCD. Докажите, что  AO = BO.

ВверхВниз   Решение


В круге радиуса R даны два взаимно перпендикулярных диаметра. Произвольная точка окружности спроектирована на эти диаметры. Найдите расстояние между проекциями точки.

ВверхВниз   Решение


В прямоугольном треугольнике ABC с равными катетами AC и BC на стороне AC как на диаметре построена окружность, пересекающая сторону AB в точке M. Найдите расстояние от вершины B до центра этой окружности, если BM = $ \sqrt{2}$.

ВверхВниз   Решение


Несколько школьников ходили за грибами. Школьник, набравший наибольшее количество грибов, собрал ⅕ общего количества грибов, а школьник, набравший наименьшее количество грибов, собрал 1/7 часть от общего количества. Сколько было школьников?

ВверхВниз   Решение


Высоты треугольника ABC, проведённые из вершин B и C пересекаются в точке M. Известно, что  BM = CM.
Докажите, что треугольник ABC – равнобедренный.

Вверх   Решение

Задачи

Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 393]      



Задача 67285

Темы:   [ Измерение длин отрезков и мер углов. Смежные углы. ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3
Классы: 7,8

Автор: Русских И.

Коля пришёл в музей современного искусства и увидел квадратную картину в раме необычной формы, состоящей из 21 равного треугольника. Коля заинтересовался, чему равны углы этих треугольников. Помогите ему их найти.

Прислать комментарий     Решение

Задача 103735

Темы:   [ ГМТ с ненулевой площадью ]
[ Вписанный угол, опирающийся на диаметр ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3
Классы: 7,8,9

Изобразите множество середин всех отрезков, концы которых лежат а) на данной полуокружности; б) на диагоналях данного квадрата.

Прислать комментарий     Решение


Задача 60466

Темы:   [ Простые числа и их свойства ]
[ Арифметическая прогрессия ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 8,9

Существуют ли  а) 5,  б) 6 простых чисел, образующих арифметическую прогрессию?

Прислать комментарий     Решение

Задача 64570

Темы:   [ Числовые таблицы и их свойства ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 5,6,7

Из шести костяшек домино (см. рис.) сложите прямоугольник 3×4 так, чтобы во всех трёх строчках точек было поровну и во всех четырёх столбцах точек было тоже поровну.

Прислать комментарий     Решение

Задача 64571

Тема:   [ Текстовые задачи (прочее) ]
Сложность: 3
Классы: 5,6,7,8

Автор: Шноль Д.Э.

Одуванчик утром распускается, два дня цветёт жёлтым, на третий день утром становится белым, а к вечеру облетает. Вчера днем на поляне было 20 жёлтых и 14 белых одуванчиков, а сегодня 15 жёлтых и 11 белых.
  а) Сколько жёлтых одуванчиков было на поляне позавчера?
  б) Сколько белых одуванчиков будет на поляне завтра?

Прислать комментарий     Решение

Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 393]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .