ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Отличник Поликарп составлял максимальное пятизначное число, которое состоит из различных нечётных цифр. Двоечник Колька составлял минимальное пятизначное число, которое состоит из различных чётных цифр. Какие числа должны были составить Поликарп и Колька?

   Решение

Задачи

Страница: << 1 2 3 4 5 [Всего задач: 24]      



Задача 65804  (#21)

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Покрытия ]
[ Неравенство Коши ]
Сложность: 3+
Классы: 8,9

Прямоугольники P и Q равновелики, но у P диагональ больше. Двумя копиями P можно накрыть Q. Докажите, что двумя копиями Q можно накрыть P.

Прислать комментарий     Решение

Задача 65810  (#22)

Темы:   [ Ортоцентр и ортотреугольник ]
[ Выход в пространство ]
[ Равногранный тетраэдр ]
[ Прямая Эйлера и окружность девяти точек ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 4+
Классы: 10,11

Автор: Якубов А.

Пусть MA, MB, MC – середины сторон неравнобедренного треугольника ABC, точки HA, HB, HC, отличные от MA, MB, MC, лежащие на соответствующих сторонах, таковы, что  MAHB = MAHC,  MBHA = MBHC,  MCHA = MCHB.  Докажите, что HA, HB, HC – основания высот треугольника ABC.

Прислать комментарий     Решение

Задача 65811  (#23)

Темы:   [ Сфера, касающаяся ребер тетраэдра ]
[ Неравенство треугольника (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
[ Касающиеся сферы ]
Сложность: 4+
Классы: 10,11

Автор: Ивлев Ф.

Дан тетраэдр, в который можно вписать сферу, касающуюся всех его рёбер. Пусть отрезки касательных из вершин равны a, b, c и d. Всегда ли можно из этих четырёх отрезков сложить какой-нибудь треугольник? (Не обязательно использовать все отрезки. Разрешается образовывать сторону треугольника из двух отрезков.)

Прислать комментарий     Решение

Задача 65812  (#24)

Темы:   [ Cфера, вписанная в призму ]
[ Прямые и плоскости в пространстве (прочее) ]
[ Касательные к сферам ]
[ Вспомогательные равные треугольники ]
[ Точка Торричелли ]
[ Окружность Аполлония ]
[ Подерный (педальный) треугольник ]
Сложность: 5
Классы: 10,11

В призму ABCA'B'C' вписана сфера, касающаяся боковых граней BCC'B', CAA'C, ABB'A' в точках A0, B0, C0 соответственно. При этом
A0BB' = ∠B0CC' = ∠C0AA'.
  а) Чему могут равняться эти углы?
  б) Докажите, что отрезки AA0, BB0, CC0 пересекаются в одной точке.
  в) Докажите, что проекции центра сферы на прямые A'B', B'C', C'A' образуют правильный треугольник.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .