ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Имеется 101 пуговица одного из 11 цветов. Докажите, что либо среди этих пуговиц найдутся 11 пуговиц одного цвета, либо 11 пуговиц разных цветов.

   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 [Всего задач: 53]      



Задача 57964  (#18.042)

Тема:   [ Композиции поворотов ]
Сложность: 5+
Классы: 9

На сторонах произвольного треугольника ABC вне его построены равнобедренные треугольники A'BC, AB'C и ABC' с вершинами A', B' и C' и углами $ \alpha$, $ \beta$ и $ \gamma$ при этих вершинах, причем $ \alpha$ + $ \beta$ + $ \gamma$ = 2$ \pi$. Докажите, что углы треугольника A'B'C' равны $ \alpha$/2, $ \beta$/2, $ \gamma$/2.
Прислать комментарий     Решение


Задача 57965  (#18.043)

Тема:   [ Композиции поворотов ]
Сложность: 5+
Классы: 9

Пусть AKL и AMN — подобные равнобедренные треугольники с вершиной A и углом $ \alpha$ при вершине; GNK и G'LM — подобные равнобедренные треугольники с углом $ \pi$ - $ \alpha$ при вершине. Докажите, что G = G'. (Треугольники ориентированные.)
Прислать комментарий     Решение


Задача 57966  (#18.044)

Тема:   [ Композиции поворотов ]
Сложность: 5+
Классы: 9

На сторонах AB, BC и CA треугольника ABC взяты точки P, Q и R соответственно. Докажите, что центры описанных окружностей треугольников APR, BPQ и CQR образуют треугольник, подобный треугольнику ABC.
Прислать комментарий     Решение


Страница: << 5 6 7 8 9 10 11 [Всего задач: 53]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .