ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи
Максимальное время работы на одном тесте: 1 секунда В процессе установки турникетов в автобусах, разработчики столкнулись с проблемой проверки подлинности билета. Для ее решения был придуман следующий способ защиты от подделок. Информация, записанная на билете, кодируется K числами (0 или 1). При этом непосредственно на билете записывается последовательность из N чисел (N ³ K) так, что числа, записанные на расстоянии K, совпадают. Таким образом, для проверки подлинности билета достаточно проверить, что все числа на расстоянии K совпадают. К сожалению, при считывании информации с билета иногда могут происходить ошибки - считается, что одно из чисел может исказиться (то есть 0 заменится на 1, или 1 - на 0). Такой билет все равно нужно считать подлинным. Во всех остальных случаях билет считается поддельным. Напишите программу, которая по информации, считанной с билета, устанавливает его подлинность, и указывает, при считывании какого из чисел могла произойти ошибка. Формат входных данных В первой строке входного файла d.in записаны числа N и K (1 £ N £ 50000, 1 £ K £ 1000, K £ N). Во второй строке записано N чисел, каждое из которых является 0 или 1 - информация, считанная с билета. Формат выходных данных В первой строке выходного файла d.out должно быть записано одно из двух сообщений - OK или FAIL (первое сообщение обозначает, что билет признан подлинным, второе - поддельным). В случае, если билет подлинный, во второй строке выведите 0, если все числа были считаны правильно, или номер числа, в котором при считывании произошла ошибка. Если возможных ответов несколько, выведите любой из них (в частности, если для признания билета подлинным можно считать, что ошибок при считывании не было, а можно считать, что была ошибка в одном из чисел - правильным является любой из вариантов ответа). Примеры
Графики двух квадратных трёхчленов пересекаются в двух точках. В обеих точках касательные к графикам перпендикулярны. Точки P1, P2, ..., Pn–1 делят сторону BC равностороннего треугольника ABC на n равных частей: BP1 = P1P2 = ... = Pn–lC. Точка M выбрана на стороне AC так, что AM = BP1. а) n = 3; б) n – произвольное натуральное число. |
Страница: 1 2 >> [Всего задач: 8]
Пятиугольник ABCDE, все углы которого тупые, вписан в окружность ω. Продолжения сторон AB и CD пересекаются в точке E1; продолжения сторон BC и DE – в точке A1. Касательная, проведённая в точке B к описанной окружности треугольника BE1C, пересекает ω в точке B1; аналогично определяется точка D1. Докажите, что B1D1 || AE.
Две окружности ω1 и ω2 с центрами O1 и O2 пересекаются в точках A и B. Точки C и D, лежащие соответственно на ω1 и ω2 по разные стороны от прямой AB, равноудалены от этой прямой. Докажите, что точки C и D равноудалены от середины отрезка O1O2.
Длина каждой стороны выпуклого четырёхугольника ABCD не меньше 1 и не больше 2. Его диагонали пересекаются в точке O.
Дан треугольник ABC и такая точка F, что ∠AFB = ∠BFC = ∠CFA. Прямая, проходящая через F и перпендикулярная BC, пересекает медиану, проведённую из вершины A, в точке A1. Точки B1 и C1 определяются аналогично. Докажите, что A1, B1 и C1 являются тремя вершинами правильного шестиугольника, три другие вершины которого лежат на сторонах треугольника ABC.
На сторонах AB и AC треугольника ABC взяты точки E и F. Прямые EF и BC пересекаются в точке S. Точки M и N – середины отрезков BC и EF соответственно. Прямая, проходящая через вершину A и параллельная MN, пересекает BC в точке K. Докажите, что BK : CK = FS : ES.
Страница: 1 2 >> [Всего задач: 8]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке