ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

В остроугольном треугольнике расположен квадрат: две его вершины находятся на одной из сторон треугольника, а две другие по одной на других сторонах. Аналогичные квадраты построены для двух других сторон треугольника. Докажите, что из трех отрезков, равных сторонам этих квадратов, можно составить остроугольный треугольник.

Вниз   Решение


На сколько нулей оканчивается число 100!?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 46]      



Задача 57873  (#17.007)

Тема:   [ Симметрия и построения ]
Сложность: 3
Классы: 9

Постройте треугольник ABC по стороне c, высоте hc и разности углов A и B.
Прислать комментарий     Решение


Задача 57874  (#17.008)

Тема:   [ Симметрия и построения ]
Сложность: 3
Классы: 9

Постройте треугольник ABC по: а) c, a - b (a > b) и углу C; б) c, a + b и углу C.
Прислать комментарий     Решение


Задача 57875  (#17.009)

Тема:   [ Симметрия и построения ]
Сложность: 3
Классы: 9

Дана прямая l и точки A и B, лежащие по одну сторону от нее. Постройте такую точку X прямой l, что AX + XB = a, где a — данная величина.
Прислать комментарий     Решение


Задача 57876  (#17.010)

Тема:   [ Симметрия и построения ]
Сложность: 4
Классы: 9

Дан острый угол MON и точки A и B внутри его. Найдите на стороне OM точку X так, чтобы треугольник XYZ, где Y и Z — точки пересечения прямых XA и XB с ON, был равнобедренным: XY = XZ.
Прислать комментарий     Решение


Задача 57877  (#17.011)

Темы:   [ Симметрия и построения ]
[ Две касательные, проведенные из одной точки ]
[ Биссектриса угла ]
Сложность: 4
Классы: 8,9,10

Дана прямая MN и две точки A и B по одну сторону от нее. Постройте на прямой MN точку X так, что  ∠AXM = 2∠BXN.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 46]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .