Страница:
<< 1 2
3 4 5 >> [Всего задач: 23]
|
|
Сложность: 3+ Классы: 8,9,10
|
Бесконечная последовательность чисел xn определяется условиями: xn+1 = 1 – |1 – 2xn|, причём 0 ≤ x1 ≤ 1.
Докажите, что последовательность, начиная с некоторого места, периодическая а) в том б) и только в том случае, когда x1 рационально.
|
|
Сложность: 3+ Классы: 8,9,10
|
D – точка на стороне
BC треугольника
ABC. B треугольники
ABD, ACD вписаны окружности, и к ним проведена общая внешняя касательная (отличная от
BC), пересекающая
AD в точке
K. Докажите, что длина отрезка
AK не зависит от положения точки
D на
BC.
В треугольнике ABC провели биссектрисы углов A и C.
Точки P и Q – основания перпендикуляров, опущенных из вершины B на эти биссектрисы. Докажите, что отрезок PQ параллелен стороне AC.
|
|
Сложность: 3+ Классы: 7,8,9
|
У Коли есть отрезок длины
k, а у Лёвы — отрезок длины
l. Сначала Коля
делит свой отрезок на три части, а потом Лёва делит на три части свой
отрезок. Если из получившихся шести отрезков можно сложить два треугольника,
то выигрывает Лёва, а если нет — Коля. Кто из играющих, в зависимости от
отношения
k/
l, может обеспечить себе победу, и как ему следует играть?
|
|
Сложность: 3+ Классы: 10,11
|
Придумайте многогранник, у которого нет трех граней с одинаковым числом
сторон.
Страница:
<< 1 2
3 4 5 >> [Всего задач: 23]