Страница:
<< 3 4 5 6 7
8 9 >> [Всего задач: 43]
|
|
Сложность: 4 Классы: 8,9,10
|
а) Докажите для всех n > 2 неравенство
б) Найдите какие-нибудь такие натуральные числа a, b, c, что для всех n > 2
|
|
Сложность: 4 Классы: 8,9,10
|
2n шахматистов дважды провели круговой турнир (за победу начисляется одно очко, за ничью – ½, за поражение – 0).
Докажите, что если сумма очков каждого изменилась не менее чем на n, то она изменилась ровно на n.
Точка P лежит внутри равнобедренного треугольника ABC (AB = BC ), причём ∠ABC = 80°, ∠PAC = 40°, ∠ACP = 30°. Найдите угол BPC.
|
|
Сложность: 4+ Классы: 8,9,10
|
Карточка матлото представляет собой таблицу 6×6 клеточек. Играющий отмечает 6 клеточек и отправляет карточку в конверте. После этого в газете публикуется шестёрка проигрышных клеточек. Докажите, что
а) можно заполнить девять карточек так, чтобы среди них
обязательно нашлась "выигрышная" карточка – такая, в которой не отмечена ни одна проигрышная клеточка;
б) восьми карточек для этого недостаточно.
|
|
Сложность: 4+ Классы: 8,9,10
|
Карточка матлото представляет собой таблицу 10×10 клеточек. Играющий
отмечает 10 клеточек и отправляет карточку в конверте. После этого в газете
публикуется десятка проигрышных клеточек. Докажите, что
а) можно заполнить 13 карточек так, чтобы среди них обязательно
нашлась "выигрышная" карточка – такая, в которой не отмечена ни одна проигрышная клеточка;
б) двенадцати карточек для этого недостаточно.
Страница:
<< 3 4 5 6 7
8 9 >> [Всего задач: 43]