ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Докажите, что если диагонали четырехугольника
перпендикулярны, то проекции точки пересечения диагоналей
на стороны являются вершинами вписанного четырехугольника.
Диагональ AC разбивает четырехугольник ABCD на
два треугольника, вписанные окружности которых касаются диагонали AC
в одной точке. Докажите, что вписанные окружности треугольников ABD
и BCD тоже касаются диагонали BD в одной точке, а точки их касания
со сторонами четырехугольника лежат на одной окружности.
Две касающиеся окружности с центрами O1
и O2 касаются внутренним образом окружности радиуса R
с центром O. Найдите периметр треугольника OO1O2.
Окружности S1 и S2 касаются окружности S
внутренним образом в точках A и B, причем одна из точек
пересечения окружностей S1 и S2 лежит на отрезке AB.
Докажите, что сумма радиусов окружностей S1 и S2 равна
радиусу окружности S.
Радиусы окружностей S1 и S2, касающихся в
точке A, равны R и r (R > r). Найдите длину касательной,
проведенной к окружности S2 из точки B окружности S1, если
известно, что AB = a. (Разберите случаи внутреннего и внешнего касания.)
Угол между сторонами AB и CD четырехугольника ABCD
равен Докажите, что проекции точки пересечения диагоналей
вписанного четырехугольника на его стороны являются вершинами
описанного четырехугольника, если только они не попадают на продолжения
сторон.
Три окружности S1, S2 и S3 попарно касаются друг
друга в трех различных точках. Докажите, что прямые,
соединяющие точку касания окружностей S1 и S2 с двумя
другими точками касания, пересекают окружность S3 в точках,
являющихся концами ее диаметра.
|
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 99]
Доказать, что существует бесконечно много чисел, не представимых в виде суммы трёх кубов.
Докажите, что ни одно из чисел вида 103n+1 нельзя представить в виде суммы двух кубов натуральных чисел.
Докажите, что среди 51 целого числа найдутся два, квадраты которых дают одинаковые остатки при делении на 100.
Назовём натуральное число n удобным, если n² + 1 делится на 1000001. Докажите, что среди чисел 1, 2, ..., 1000000 чётное число удобных.
а) Может ли квадрат натурального числа оканчиваться на 2? б) Можно ли, используя только цифры 2, 3, 7, 8 (возможно, по несколько раз), составить квадрат натурального числа?
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 99]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке