ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Из набора гирь весом 1, 2, ..., 26 выделить шесть гирь так, чтобы среди них не было выбрать двух кучек равного веса.
Доказать, что нельзя выбрать семь гирь, обладающих тем же свойством.

   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 48]      



Задача 57556  (#11.036)

Тема:   [ Многоугольники (экстремальные свойства) ]
Сложность: 4
Классы: 9

Среди всех многоугольников, вписанных в данную окружность, найдите тот, у которого максимальна сумма квадратов длин сторон.
Прислать комментарий     Решение


Задача 57557  (#11.037)

Тема:   [ Многоугольники (экстремальные свойства) ]
Сложность: 5
Классы: 9

Дан выпуклый многоугольник A1...An. Докажите, что точка многоугольника, для которой максимальна сумма расстояний от нее до всех вершин, является вершиной.
Прислать комментарий     Решение


Задача 57558  (#11.038)

Тема:   [ Экстремальные свойства (прочее) ]
Сложность: 3
Классы: 9

Внутри окружности с центром O дана точка A. Найдите точку M окружности, для которой угол OMA максимален.
Прислать комментарий     Решение


Задача 57559  (#11.039)

Тема:   [ Экстремальные свойства (прочее) ]
Сложность: 4
Классы: 9

На плоскости даны прямая l и точки A и B, лежащие по разные стороны от нее. Постройте окружность, проходящую через точки A и B так, чтобы прямая l высекала на ней хорду наименьшей длины.
Прислать комментарий     Решение


Задача 57560  (#11.040)

Тема:   [ Экстремальные свойства (прочее) ]
Сложность: 4
Классы: 9

Даны прямая l и точки P и Q, лежащие по одну сторону от нее. На прямой l берем точку M и в треугольнике PQM проводим высоты PP' и QQ'. При каком положении точки M длина отрезка P'Q' минимальна?
Прислать комментарий     Решение


Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 48]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .