ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

а) Есть 10 монет. Известно, что одна из них фальшивая (по весу тяжелее настоящих). Как за три взвешивания на чашечных весах без гирь определить фальшивую монету?
    б) Как определить фальшивую монету за три взвешивания, если монет 27?

   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 58]      



Задача 32781

Тема:   [ Задачи на движение ]
Сложность: 3
Классы: 7,8,9

Двое лыжников шли с постоянной скоростью 6 км/ч на расстоянии 200 метров друг от друга. Потом они стали подниматься в большую горку, и скорость упала до 4 км/ч. Потом оба лыжника съехали с горки со скоростью 7 км/ч и попали в глубокий снег, где их скорость стала всего 3 км/ч.
Каким стало расстояние между ними?

Прислать комментарий     Решение

Задача 32791

Темы:   [ Задачи на проценты и отношения ]
[ Формула включения-исключения ]
Сложность: 3
Классы: 7,8,9

Трое сумасшедших маляров принялись красить пол каждый в свой цвет. Один успел закрасить красным 75% пола, другой зелёным – 70%, третий синим – 65%. Какая часть пола заведомо закрашена всеми тремя красками?

Прислать комментарий     Решение

Задача 32797

Тема:   [ Задачи на движение ]
Сложность: 3
Классы: 7,8,9

Клайв прокрутил минутную стрелку, так же как в задаче 32796.)
  а) Сколько раз за это время минутная стрелка совпала с часовой?
  б) В какие моменты это происходило?

Прислать комментарий     Решение

Задача 32798

Тема:   [ Теорема о промежуточном значении. Связность ]
Сложность: 3
Классы: 7,8

(Продолжение задачи 32796)
  Стоя в углу, Клайв разобрал свои наручные часы, чтобы посмотреть, как они устроены. Собирая их обратно, он произвольно надел часовую и минутную стрелки. Сможет ли он так повернуть циферблат, чтобы хоть раз в сутки часы показывали правильное время (часы при этом еще не заведены)?

Прислать комментарий     Решение

Задача 32800

Темы:   [ НОД и НОК. Взаимная простота ]
[ Уравнения в целых числах ]
Сложность: 3
Классы: 7,8

Очень скучно смотреть на черно-белый циферблат, поэтому Клайв ровно в полдень закрасил число 12 красным цветом и решил через каждые 57 часов закрашивать текущий час в красный цвет.
  а) Сколько чисел на циферблате окажутся покрашенными?
  б) Сколько окажется красных чисел, если Клайв будет красить их каждый 1913-й час?

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 58]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .