|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Параграфы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Рассматривается последовательность квадратов на плоскости. Первые два квадрата со стороной 1 расположены рядом (второй правее) и имеют одну общую вертикальную сторону. Нижняя сторона третьего квадрата со стороной 2 содержит верхние стороны первых двух квадратов. Правая сторона четвёртого квадрата со стороной 3 содержит левые стороны первого и третьего квадратов. Верхняя сторона пятого квадрата со стороной 5 содержит нижние стороны первого, второго и четвертого квадратов. Далее двигаемся по спирали бесконечно, обходя рассмотренные квадраты против часовой стрелки так, что сторона нового квадрата составлена из сторон трёх ранее рассмотренных. Докажите, что центры всех этих квадратов принадлежат двум прямым.
|
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 141]
Пусть m1(x), ..., mn(x) – попарно взаимно простые многочлены, a1(x), ..., an(x) – произвольные многочлены.
Пусть P(x) = (2x² – 2x + 1)17(3x² – 3x + 1)17. Найдите
При каких a и b многочлен P(x) = (a + b)x5 + abx² + 1 делится на x² – 3x + 2?
Кубическое и квадратное уравнения с рациональными коэффициентами имеют общее решение.
Найдите остаток R(x) от деления многочлена xn + x + 2 на x² – 1.
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 141] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|