ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Анджанс А.

Рассматривается последовательность квадратов на плоскости. Первые два квадрата со стороной 1 расположены рядом (второй правее) и имеют одну общую вертикальную сторону. Нижняя сторона третьего квадрата со стороной 2 содержит верхние стороны первых двух квадратов. Правая сторона четвёртого квадрата со стороной 3 содержит левые стороны первого и третьего квадратов. Верхняя сторона пятого квадрата со стороной 5 содержит нижние стороны первого, второго и четвертого квадратов. Далее двигаемся по спирали бесконечно, обходя рассмотренные квадраты против часовой стрелки так, что сторона нового квадрата составлена из сторон трёх ранее рассмотренных. Докажите, что центры всех этих квадратов принадлежат двум прямым.

 

   Решение

Задачи

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 141]      



Задача 60974  (#06.051)

 [Китайская теорема об остатках для многочленов]
Темы:   [ Китайская теорема об остатках ]
[ Многочлены (прочее) ]
Сложность: 4
Классы: 9,10,11

Пусть m1(x), ..., mn(x) – попарно взаимно простые многочлены, a1(x), ..., an(x) – произвольные многочлены.
Докажите, что существует ровно один такой многочлен p(x), что
    p(x) ≡ a1(x) (mod m1(x)),
      ...
    p(x) ≡ an(x) (mod mn(x))
и  deg p(x) < deg m1(x) + ... + deg mn(x).

Прислать комментарий     Решение

Задача 60975  (#06.052)

Тема:   [ Свойства коэффициентов многочлена ]
Сложность: 3+
Классы: 8,9,10

Пусть  P(x) = (2x² – 2x + 1)17(3x² – 3x + 1)17.  Найдите
  a) сумму коэффициентов этого многочлена;
  б) суммы коэффициентов при чётных и нечётных степенях x.

Прислать комментарий     Решение

Задача 60976  (#06.053)

Темы:   [ Теорема Безу. Разложение на множители ]
[ Методы решения задач с параметром ]
Сложность: 3+
Классы: 8,9,10

При каких a и b многочлен  P(x) = (a + b)x5 + abx² + 1  делится на  x² – 3x + 2?

Прислать комментарий     Решение

Задача 60977  (#06.054)

Тема:   [ Деление многочленов с остатком. НОД и НОК многочленов ]
Сложность: 4-
Классы: 8,9,10,11

Кубическое и квадратное уравнения с рациональными коэффициентами имеют общее решение.
Докажите, что у кубического уравнения есть рациональный корень.

Прислать комментарий     Решение

Задача 60978  (#06.055)

Темы:   [ Теорема Безу. Разложение на множители ]
[ Деление многочленов с остатком. НОД и НОК многочленов ]
Сложность: 4-
Классы: 8,9,10,11

Найдите остаток R(x) от деления многочлена  xn + x + 2  на  x² – 1.

Прислать комментарий     Решение

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 141]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .