ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Туры:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи
В трапеции ABCD известно, что
Докажите, что если a, b, c, d, x, y, u, v – вещественные числа и abcd > 0, то (ax + bu)(av + by)(cx + dv)(cu + dy) ≥ (acuvx + bcuxy + advxy + bduvy)(acx + bcu + adv + bdy).
|
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 38]
Арифметическая прогрессия состоит из целых чисел, а её сумма – степень двойки.
Какое максимальное число шашек можно расставить на доске 8×8 так, чтобы каждая была под боем?
Какое наименьшее количество квадратиков 1×1 надо нарисовать, чтобы получилось изображение квадрата 25×25, разделённого на 625 квадратиков 1×1?
Сто натуральных чисел образуют возрастающую арифметическую прогрессию. Возможно ли, что каждые два из этих чисел взаимно просты?
Имеется несколько юношей, каждый из которых знаком с некоторыми девушками. Две свахи знают, кто с кем знаком. Одна сваха заявляет: "Я могу одновременно поженить всех брюнетов так, чтобы каждый из них женился на знакомой ему девушке!" Вторая сваха говорит: "А я могу устроить судьбу всех блондинок: каждая выйдет замуж за знакомого юношу!" Этот диалог услышал любитель математики, который сказал: "В таком случае можно сделать и то, и другое!" Прав ли он?
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 38]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке