Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 38]
|
|
Сложность: 3+ Классы: 10,11
|
Докажите, что любое натуральное число можно представить в виде
3u12v1 + 3u22v2 + ... + 3uk2vk, где u1 > u2 > ... > uk ≥ 0 и 0 ≤ v1 < v2 < ... < vk – целые числа.
В треугольнике ABC биссектриса AL, серединный перпендикуляр к стороне AB и высота BK пересекаются в одной точке. Докажите, что биссектриса AL, серединный перпендикуляр к AC и высота CH, также пересекаются в одной точке.
Сумма n последовательных натуральных чисел – простое число. Найдите все n, при которых это возможно.
а) Есть три одинаковых больших сосуда. В одном – 3 л сиропа, в другом – 20 л воды, третий – пустой. Можно выливать из одного сосуда всю жидкость в другой или в раковину. Можно выбрать два сосуда и доливать в один из них из третьего, пока уровни жидкости в выбранных сосудах не сравняются. Как получить 10 л разбавленного 30%-го сиропа?
б) То же, но воды – N л. При каких целых N можно получить 10 л разбавленного 30%-го сиропа?
|
|
Сложность: 3+ Классы: 9,10,11
|
Звенья AB, BC и CD ломаной ABCD равны по длине и касаются некоторой окружности.
Доказать, что точка K касания этой окружности со звеном BC, её центр O и точка пересечения прямых AC и BD лежат на одной прямой.
Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 38]