ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 38]      



Задача 65410

Темы:   [ Площадь и ортогональная проекция ]
[ Параллелограмм Вариньона ]
[ Малые шевеления ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 10,11

Прямоугольная проекция треугольной пирамиды на некоторую плоскость имеет максимально возможную площадь.
Докажите, что эта плоскость параллельна либо одной из граней, либо двум скрещивающимся ребрам пирамиды.

Прислать комментарий     Решение

Задача 108102

Темы:   [ Против большей стороны лежит больший угол ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 4-
Классы: 8,9

Автор: Фольклор

Дан квадрат, внутри которого лежит точка O. Докажите, что сумма углов OAB, OBC, OCD и ODA отличается от 180° не больше, чем на 45°.

Прислать комментарий     Решение

Задача 65167

Темы:   [ Кооперативные алгоритмы ]
[ Принцип Дирихле (прочее) ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4
Классы: 9,10,11

Перед экстрасенсом кладут колоду из 36 карт рубашкой вверх. Он называет масть верхней карты, после чего карту открывают, показывают ему и откладывают в сторону. После этого экстрасенс называют масть следующей карты, и т. д. Задача экстрасенса – угадать масть как можно большее число раз. На деле рубашки карт несимметричны, и экстрасенс видит, в каком из двух положений лежит верхняя карта. Колода подготовлена подкупленным служащим. Служащий знает порядок карт в колоде, и хотя изменить его не может, зато может подсказать, располагая рубашки карт так или иначе согласно договоренности. Может ли экстрасенс с помощью такой подсказки гарантированно обеспечить угадывание масти
  а) более, чем у половины карт;
  б) не менее, чем у 20 карт?

Прислать комментарий     Решение

Задача 65389

Тема:   [ Системы точек и отрезков. Примеры и контрпримеры ]
Сложность: 4
Классы: 8,9

N точек плоскости, никакие три из которых не лежат на одной прямой, попарно соединили отрезками (каждую с каждой). Часть отрезков покрасили красным, остальные – синим. Все красные отрезки образовали замкнутую несамопересекающуюся ломаную, и все синие отрезки – тоже. Найдите все N, при которых это могло получиться.

Прислать комментарий     Решение

Задача 65390

Темы:   [ Сечения, развертки и остовы (прочее) ]
[ Неравенства с трехгранными углами ]
[ Примеры и контрпримеры. Конструкции ]
[ Малые шевеления ]
Сложность: 4
Классы: 10,11

Бумажный тетраэдр разрезали по трём ребрам, не принадлежащим одной грани. Могло ли случиться, что полученную развёртку нельзя расположить на плоскости без самопересечений (в один слой).

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 38]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .