Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

Точка O лежит на отрезке AB, причём AO = 13, OB = 7. С центром в точке O проведена окружность радиуса 5. Из A и B к ней проведены касательные, пересекающиеся в точке M, причём точки касания лежат по одну сторону от прямой AB. Найдите радиус окружности, описанной вокруг треугольника AMB.

Вниз   Решение


Произведение пяти чисел не равно нулю. Каждое из этих чисел уменьшили на единицу, при этом их произведение не изменилось. Приведите пример таких чисел.

ВверхВниз   Решение


Пусть M и N — середины сторон CD и DE правильного шестиугольника ABCDEF, P — точка пересечения отрезков AM и BN.
а) Найдите величину угла между прямыми AM и BN.
б) Докажите, что SABP = SMDNP.

ВверхВниз   Решение


Числовая последовательность  A1, A2, ..., An, ...  определена равенствами   A1 = 1,   A2 = – 1,   An = – An–1 – 2An–2   (n ≥ 3).
Докажите, что при любом натуральном n число     является полным квадратом.

ВверхВниз   Решение


Из имеющихся последовательностей {bn} и {cn} (возможно, {bn} совпадает с {cn})  разрешается получать последовательности  {bn + cn},
{bn – cn},  {bncn}  и  {bn/cn}  (если все члены последовательности {cn} отличны от 0). Кроме того, из любой имеющейся последовательности можно получить новую, вычеркнув несколько начальных членов. Сначала есть только последовательность {an}. Можно ли получить из неё описанными выше операциями последовательность {n}, то есть 1, 2, 3, 4, ..., если
  а)  an = n²;

  б)  

  в)  

ВверхВниз   Решение


Делится ли  222555 + 555222  на 7?

ВверхВниз   Решение


В классе 30 учеников. Докажите, что вероятность того, что у каких-нибудь двух учеников совпадают дни рождения, составляет больше 50%.

ВверхВниз   Решение


Используя результат задачи 61403, докажите неравенства:
  а)     неравенство Коши);
  б)  

  в)     где  b1 + ... + bn = 1.
  Значения переменных считаются положительными.

ВверхВниз   Решение


С помощью циркуля и линейки в данный треугольник впишите треугольник, равный другому данному треугольнику.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 76480  (#1)

Темы:   [ Деление с остатком ]
[ Десятичная система счисления ]
[ НОД и НОК. Взаимная простота ]
Сложность: 3
Классы: 7,8,9

Дописать к 523... три цифры так, чтобы полученное шестизначное число делилось на 7, 8 и 9.

Прислать комментарий     Решение

Задача 76480  (#2)

Темы:   [ Деление с остатком ]
[ Десятичная система счисления ]
[ НОД и НОК. Взаимная простота ]
Сложность: 3
Классы: 7,8,9

Дописать к 523... три цифры так, чтобы полученное шестизначное число делилось на 7, 8 и 9.

Прислать комментарий     Решение

Задача 76485  (#3)

Темы:   [ Свойства коэффициентов многочлена ]
[ Целочисленные и целозначные многочлены ]
[ Четность и нечетность ]
[ Арифметика остатков (прочее) ]
Сложность: 3
Классы: 9,10

Доказать, что многочлен с целыми коэффициентами  a0xn + a1xn–1 + ... + an–1x + an,  принимающий при  x = 0  и  x = 1  нечётные значения, не имеет целых корней.

Прислать комментарий     Решение

Задача 76486  (#4)

Тема:   [ Построение треугольников по различным точкам ]
Сложность: 3+
Классы: 10,11

Построить треугольник ABC по точкам M и N — основаниям высот AM и BN — и прямой, на которой лежит сторона AB.
Прислать комментарий     Решение


Задача 76487  (#5)

Тема:   [ Уравнения с модулями ]
Сложность: 3
Классы: 10,11

Решить уравнение:

| x + 1| - | x| + 3| x - 1| - 2| x - 2| = x + 2.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .