ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

В круговых автогонках участвовали четыре гонщика. Их машины стартовали одновременно из одной точки и двигались с постоянными скоростями. Известно, что после начала гонок для каждых трёх машин нашёлся момент, когда они встретились. Докажите, что после начала гонок найдётся момент, когда встретятся все четыре машины. (Гонки считаем бесконечно долгими по времени.)

Вниз   Решение


За круглым столом сидят 13 богатырей из k городов, где  1 < k < 13.  Каждый богатырь держит в руке золотой или серебряный кубок, причём золотых кубков тоже k. Князь повелел каждому богатырю передать свой кубок соседу справа и повторять это до тех пор, пока какие-нибудь два богатыря из одного города оба не получат золотые кубки. Доказать, что желание князя всегда будет исполнено.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 8]      



Задача 116638  (#10.1)

Темы:   [ Числовые таблицы и их свойства ]
[ Задачи с ограничениями ]
Сложность: 4
Классы: 8,9,10

Автор: Карасев Р.

В каждой клетке таблицы, состоящей из 10 столбцов и n строк, записана цифра. Известно, что для каждой строки A и любых двух столбцов найдётся строка, отличающаяся от A ровно в этих двух столбцах. Докажите, что  n ≥ 512.

Прислать комментарий     Решение

Задача 116639  (#10.2)

Темы:   [ Исследование квадратного трехчлена ]
[ Арифметическая прогрессия ]
[ Предел функции ]
Сложность: 3
Классы: 8,9,10

На доске написаны девять приведённых квадратных трёхчленов:  x² + a1x + b1x² + a2x + b2,  ...,  x² + a9x + b9. Известно, что последовательности  a1, a2, ..., a9  и  b1, b2, ..., b9  – арифметические прогрессии. Оказалось, что сумма всех девяти трёхчленов имеет хотя бы один корень. Какое наибольшее количество исходных трёхчленов может не иметь корней?

Прислать комментарий     Решение

Задача 116640  (#10.3)

Темы:   [ Теория графов (прочее) ]
[ Вспомогательная раскраска (прочее) ]
[ Доказательство от противного ]
Сложность: 5-
Классы: 8,9,10

Назовём компанию k-неразбиваемой, если при любом разбиении её на k групп в одной из групп найдутся два знакомых человека. Дана 3-неразбиваемая компания, в которой нет четырёх попарно знакомых человек. Докажите, что её можно разделить на две компании, одна из которых 2-неразбиваемая, а другая – 1-неразбиваемая.

Прислать комментарий     Решение

Задача 116641  (#10.4)

Темы:   [ Вневписанные окружности ]
[ Вспомогательная окружность ]
[ Радикальная ось ]
Сложность: 4
Классы: 8,9,10

Автор: Шмаров В.

Периметр треугольника ABC равен 4. На лучах AB и AC отмечены точки X и Y так, что  AX = AY = 1.  Отрезки BC и XY пересекаются в точке M. Докажите, что периметр одного из треугольников ABM и ACM равен 2.

Прислать комментарий     Решение

Задача 116642  (#10.5)

Темы:   [ Числовые неравенства. Сравнения чисел. ]
[ Разложение на множители ]
Сложность: 3
Классы: 8,9,10

Даны 10 попарно различных чисел. Для каждой пары данных чисел Вася записал у себя в тетради квадрат их разности, а Петя записал у себя в тетради модуль разности их квадратов. Могли ли в тетрадях у мальчиков получиться одинаковые наборы из 45 чисел?

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .