ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Концы отрезка постоянной длины скользят по сторонам данного угла. Из середины этого отрезка к нему восставлен перпендикуляр. Докажите, что отрезок перпендикуляра от его начала до точки пересечения с биссектрисой угла имеет постоянную длину.

   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 98389  (#1)

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Признаки подобия ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3-
Классы: 8,9,10

Автор: Федотов А.

Барон Мюнхгаузен утверждает, что ему удалось составить некоторый прямоугольник из нескольких подобных между собой непрямоугольных треугольников. Можно ли ему верить? (Среди подобных треугольников могут быть и равные.)

Прислать комментарий     Решение

Задача 98380  (#2)

Темы:   [ Десятичная система счисления ]
[ Производящие функции ]
[ Арифметическая прогрессия ]
Сложность: 3
Классы: 7,8,9,10

а) Для каждого трёхзначного числа берём произведение его цифр, а затем эти произведения, вычисленные для всех трёхзначных чисел, складываем. Сколько получится?
б) Тот же вопрос для четырёхзначных чисел.
Прислать комментарий     Решение


Задача 116479  (#3)

Темы:   [ Раскраски ]
[ Шахматные доски и шахматные фигуры ]
Сложность: 3-
Классы: 7,8,9

В какое наибольшее количество цветов можно раскрасить клетки шахматной доски 8×8 так, чтобы каждая клетка граничила по стороне хотя бы с двумя клетками того же цвета?

Прислать комментарий     Решение

Задача 98392  (#4)

Темы:   [ Геометрические интерпретации в алгебре ]
[ Метод координат на плоскости ]
[ Методы решения задач с параметром ]
[ Системы алгебраических нелинейных уравнений ]
[ Наглядная геометрия в пространстве ]
[ Правильные многогранники (прочее) ]
Сложность: 4-
Классы: 10,11

Положительные числа A, B, C и D таковы, что система уравнений
    x² + y² = A,
    |x| + |y| = B
имеет m решений, а система уравнений
    x² + y² + z² = C,
    |x| + |y| + |z| = D
имеет n решений. Известно, что  m > n > 1.  Найдите m и n.

Прислать комментарий     Решение

Задача 108082  (#5)

Темы:   [ Окружность, вписанная в угол ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
[ Свойства симметрий и осей симметрии ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 3+
Классы: 8,9

В угол вписана окружность с центром O. Через точку A, симметричную точке O относительно одной из сторон угла, провели к окружности касательные, точки пересечения которых с дальней от точки A стороной угла – B и C. Докажите, что центр описанной окружности треугольника ABC лежит на биссектрисе данного угла.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .