Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Кружки, факультативы, спецкурсы:
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

Треугольник ABC вписан в окружность с центром в O . X "– произвольная точка внутри треугольника ABC , такая, что XAB= XBC=ϕ , а P – такая точка, что PX OX , XOP=ϕ , причем углы XOP и XAB одинаково ориентированы. Докажите, что все такие точки P лежат на одной прямой.

Вниз   Решение


Можно ли в таблице 6×6 расставить числа 0, 1 и -1 так, чтобы все суммы по вертикалям, горизонталям и двум диагоналям были различны?

ВверхВниз   Решение


Таня стоит на берегу речки. У неё есть два глиняных кувшина: один — на 5 литров, а про второй Таня помнит лишь то, что он вмещает то ли 3, то ли 4 литра. Помогите Тане определить ёмкость второго кувшина. (Заглядывая в кувшин, нельзя понять, сколько в нём воды.)

ВверхВниз   Решение


Дядька Черномор написал на листке бумаги число 20 и отдал листок тридцати трём богатырям. Каждый богатырь (по очереди) либо прибавил к числу единицу, либо отнял единицу. Могло ли в результате получиться число 10?

ВверхВниз   Решение


В данную окружность вписать прямоугольник так, чтобы две данные точки внутри окружности лежали на сторонах прямоугольника.

ВверхВниз   Решение


Существуют ли такие три квадратных трёхчлена, что каждый из них имеет корень, а сумма любых двух из них корней не имеет?

ВверхВниз   Решение


В пространстве заданы три луча: DA, DB и DC, имеющие общее начало D, причём ∠ADB = ∠ADC = ∠BDC = 90°. Сфера пересекает луч DA в точках A1 и A2, луч DB – в точках B1 и B2, луч DC – в точках C1 и C2. Найдите площадь треугольника A2B2C2, если площади треугольников DA1B1, DA1C1, DB1C1 и DA2B2 равны соответственно , 10, 6 и 40.

ВверхВниз   Решение


Решить уравнение  (x² – x + 1)4 – 10x²(x² – x + 1)² + 9x4 = 0.

ВверхВниз   Решение


На юбилей 57-й школы Московский Монетный Двор выпустил юбилейные монеты достоинством в 57 копеек. А на юбилей 239-й школы монеты достоинством в 239 копеек выпустил Санкт-Петербургский Монетный Двор. Чтобы никому не было обидно, количество денег, выпущенных оба раза, было одинаково. Смогут ли Олег и 36 его друзей разделить все выпущенные монеты так, чтобы каждому досталось одинаковое количество монет?

Вверх   Решение

Задачи

Страница: << 101 102 103 104 105 106 107 >> [Всего задач: 644]      



Задача 104011

Тема:   [ Математическая логика (прочее) ]
Сложность: 3
Классы: 7,8,9

На острове Вопростров люди задают друг другу вопросы, на которые можно ответить лишь "да" или "нет". При этом каждый из них относится ровно к одному из племён A или B. Люди из племени A задают только те вопросы, на которые правильный ответ "да", а из племени B - те вопросы, на который правильный ответ "нет". В одном доме жила семейная пара Итан и Вайолет Рассел. Когда инспектор Кругг подошёл к дому, на пороге его встретил хозяин со словами: "Скажите, мы с Вайолет относимся к племени B?". Инспектор подумал и дал правильный ответ. Какой?
Прислать комментарий     Решение


Задача 104014

Тема:   [ Признаки делимости на 5 и 10 ]
Сложность: 3
Классы: 7,8

а) Олег перемножил какие-то семь подряд идущих чисел. Верно ли, что у него получилось число, оканчивающееся на ровно один ноль?
б) Саша решил перемножить первые 57 чисел:  1·2·...·56·57.  У него получилось число, оканчивающееся на 12 нулей. Правильно ли он всё вычислил?

Прислать комментарий     Решение

Задача 104016

Тема:   [ НОД и НОК. Взаимная простота ]
Сложность: 3
Классы: 7,8,9

На юбилей 57-й школы Московский Монетный Двор выпустил юбилейные монеты достоинством в 57 копеек. А на юбилей 239-й школы монеты достоинством в 239 копеек выпустил Санкт-Петербургский Монетный Двор. Чтобы никому не было обидно, количество денег, выпущенных оба раза, было одинаково. Смогут ли Олег и 36 его друзей разделить все выпущенные монеты так, чтобы каждому досталось одинаковое количество монет?

Прислать комментарий     Решение

Задача 104018

Темы:   [ Признаки делимости на 2 и 4 ]
[ Признаки делимости на 3 и 9 ]
Сложность: 3
Классы: 7,8

Дома у Олега есть сейф, но кода он не знает. Бабушка рассказала Олегу, что код состоит из 7 цифр – двоек и троек, причем двоек больше, чем троек. А дедушка – что код делится и на 3, и на 4. Сможет ли Олег с первой попытки открыть сейф?

Прислать комментарий     Решение

Задача 104028

Темы:   [ Инварианты ]
[ Четность и нечетность ]
Сложность: 3
Классы: 7,8,9

У племени семпоальтеков было 24 слитка золота, 26 редких жемчужин и 25 стеклянных бус. У Кортеса они могут обменять слиток золота и жемчужину на одни бусы, у Монтесумы – один слиток и одни бусы на одну жемчужину, а у тотонаков – одну жемчужину и одни бусы на один золотой слиток. После долгих обменов у семпоальтеков осталось только одна вещь. Какая?

Прислать комментарий     Решение

Страница: << 101 102 103 104 105 106 107 >> [Всего задач: 644]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .