Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Все рёбра правильной четырёхугольной пирамиды равны. Найдите угол между противоположными боковыми рёбрами.

Вниз   Решение


Вася нарисовал на плоскости несколько окружностей и провёл всевозможные общие касательные к каждой паре этих окружностей. Оказалось, что проведённые прямые содержат все стороны некоторого правильного 2011-угольника. Какое наименьшее количество окружностей мог нарисовать Вася?

ВверхВниз   Решение


а) В городе Мехико для ограничения транспортного потока для каждой частной автомашины устанавливаются два дня недели, в которые она не может выезжать на улицы города. Семье требуется каждый день иметь в распоряжении не менее десяти машин. Каким наименьшим количеством машин может обойтись семья, если её члены могут сами выбирать запрещенные дни для своих автомобилей?

б) В Мехико для каждой частной автомашины устанавливается один день в неделю, в который она не может выезжать на улицы города. Состоятельная семья из десяти человек подкупила полицию, и для каждой машины они называют два дня, один из которых полиция выбирает в качестве невыездного дня. Какое наименьшее количество машин нужно купить семье, чтобы каждый день каждый член семьи мог самостоятельно ездить, если утверждение невыездных дней для автомобилей идёт последовательно?

ВверхВниз   Решение


Существуют ли 1998 различных натуральных чисел, произведение каждых двух из которых делится нацело на квадрат их разности?

ВверхВниз   Решение


Положительные числа a, b и c таковы, что  abc = 1.  Докажите неравенство

+ + ≤ 1.

ВверхВниз   Решение


Квадратный лист бумаги согнули по прямой так, что одна из вершин квадрата оказалась на несмежной стороне. При этом образовалось три треугольника. В эти треугольники вписали окружности (см. рис.). Докажите, что радиус одной из этих окружностей равен сумме радиусов двух других.

ВверхВниз   Решение


Найдите объём правильной треугольной пирамиды со стороной основания a и высотой h .

ВверхВниз   Решение


На плоскости дано конечное число полос, сумма ширин которых равна 100, и круг радиуса 1.
Докажите, что каждую из полос можно параллельно перенести так, чтобы все они вместе покрыли круг.

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 [Всего задач: 43]      



Задача 98344

Темы:   [ Взвешивания ]
[ Рекуррентные соотношения (прочее) ]
[ Раскладки и разбиения ]
[ Индукция (прочее) ]
Сложность: 5
Классы: 9,10,11

Имеется набор гирь, веса которых в граммах: 1, 2, 4,... , 512 (последовательные степени двойки) – по одной гире каждого веса. Груз разрешается взвешивать с помощью этого набора, кладя гири на обе чашки весов.
  а) Докажите, что никакой груз нельзя взвесить этими гирями более чем 89 способами.
  б) Приведите пример груза, который можно взвесить ровно 89 способами.

Прислать комментарий     Решение

Задача 98331

Темы:   [ Четность перестановки ]
[ Обход графов ]
[ Перестройки ]
Сложность: 5+
Классы: 9,10,11

Автор: Фомин С.В.

  а) Четыре порта 1, 2, 3, 4 расположены (в этом порядке) на окружности круглого острова. Их связывает плоская сеть дорог, на которых могут быть перекрёстки, то есть точки, где пересекаются, сходятся или разветвляются дороги. На всех участках дорог введено одностороннее движение так, что, выехав от любого порта или перекрёстка, нельзя вернуться в него снова. Пусть  fij  означает число различных путей, идущих из порта i в порт j. Докажите неравенство   f14f23f13f24.
  б) Докажите, что если портов шесть: 1, 2, 3, 4, 5, 6 (по кругу в этом порядке), то   f16f25f34 + f15f24f36 + f14f26f35f16f24f35 + f15f26f34 + f14f25f36.

Прислать комментарий     Решение

Задача 107844

Темы:   [ Покрытия ]
[ Принцип Дирихле (углы и длины) ]
[ Векторы помогают решить задачу ]
[ Вспомогательные проекции ]
[ Геометрические неравенства (прочее) ]
[ Параллельный перенос (прочее) ]
Сложность: 5+
Классы: 9,10,11

На плоскости дано конечное число полос, сумма ширин которых равна 100, и круг радиуса 1.
Докажите, что каждую из полос можно параллельно перенести так, чтобы все они вместе покрыли круг.

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 [Всего задач: 43]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .