ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Гордон В.

Биссектриса угла A треугольника ABC пересекает описанную окружность в точке D. Пусть P – точка, симметричная центру вписанной окружности треугольника ABC относительно середины стороны BC, M – вторая точка пересечения прямой DP с описанной окружностью. Докажите, что расстояние от точки M до одной из вершин A, B, C равно сумме расстояний от M до двух других вершин.

   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 40]      



Задача 98155

Темы:   [ Монотонность, ограниченность ]
[ Показательные функции и логарифмы (прочее) ]
Сложность: 4
Классы: 10,11

Функция  f(x) на отрезке [a, b] равна максимуму из нескольких функций вида y = C·10–|x–d| (с различными d и C, причём все C положительны). Дано, что
f(a) = f(b). Докажите, что сумма длин участков, на которых функция возрастает, равна сумме длин участков, на которых функция убывает.

Прислать комментарий     Решение

Задача 98159

Темы:   [ Рекуррентные соотношения (прочее) ]
[ Целая и дробная части. Принцип Архимеда ]
[ Индукция (прочее) ]
Сложность: 4
Классы: 10,11

Автор: Анджанс А.

Числовая последовательность определяется условиями:  
Сколько полных квадратов встречается среди первых членов этой последовательности, не превосходящих 1000000?

Прислать комментарий     Решение


Задача 107994

Темы:   [ Наибольшая или наименьшая длина ]
[ Средняя линия треугольника ]
[ Теорема косинусов ]
[ Теорема синусов ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 4
Классы: 8,9,10

На стороне AB треугольника ABC внешним образом построен квадрат с центром O. Точки M и N   середины сторон AC и BC соответственно, а длины этих сторон равны соответственно a и b. Найти максимум суммы  OM + ON,  когда угол ACB меняется.

Прислать комментарий     Решение

Задача 107996

Темы:   [ Замощения костями домино и плитками ]
[ Примеры и контрпримеры. Конструкции ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Геометрическая прогрессия ]
[ Индукция в геометрии ]
Сложность: 4
Классы: 8,9,10,11

Единичный квадрат разбит на конечное число квадратиков (размеры которых могут различаться). Может ли сумма периметров квадратиков, пересекающихся с главной диагональю, быть больше 1993? (Если квадратик пересекается с диагональю по одной точке, это тоже считается пересечением.)

Прислать комментарий     Решение

Задача 108061

Темы:   [ Теорема синусов ]
[ Ортогональная (прямоугольная) проекция ]
[ Вписанные и описанные окружности ]
Сложность: 4
Классы: 8,9

Автор: Гордон В.

Биссектриса угла A треугольника ABC пересекает описанную окружность в точке D. Пусть P – точка, симметричная центру вписанной окружности треугольника ABC относительно середины стороны BC, M – вторая точка пересечения прямой DP с описанной окружностью. Докажите, что расстояние от точки M до одной из вершин A, B, C равно сумме расстояний от M до двух других вершин.

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 40]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .