Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 14 задач
Версия для печати
Убрать все задачи

В 100 ящиках лежат яблоки, апельсины и бананы. Докажите, что можно так выбрать 51 ящик, что в них окажется не менее половины всех яблок, не менее половины всех апельсинов и не менее половины всех бананов.

Вниз   Решение


Построить прямоугольный треугольник, зная, что часть катета от вершины острого угла до точки касания с вписанной окружностью равна данному отрезку m , а противолежащий этому катету угол равен данному углу α .

ВверхВниз   Решение


Автор: Фольклор

На рисунке изображен график функции  у = kx + b .  Сравните |k| и |b|.

ВверхВниз   Решение


Автор: Фольклор

Найдите наименьшее натуральное значение n, при котором число n! делится на 990.

ВверхВниз   Решение


Внутри правильного n-угольника со стороной a вписано n равных кругов так, что каждый круг касается двух смежных сторон многоугольника и двух соседних кругов. Найти площадь "звёздочки", ограниченной только дугами вписанных кругов.

ВверхВниз   Решение


Автор: Фольклор

Известно, что   .   Найдите значение выражения   .

ВверхВниз   Решение


Автор: Фольклор

В стаде, состоящем из лошадей, двугорбых и одногорбых верблюдов, в общей сложности 200 горбов.
Сколько животных в стаде, если количество лошадей равно количеству двугорбых верблюдов? .

ВверхВниз   Решение


Найти такое трёхзначное число, удвоив которое, мы получим число, выражающее количество цифр, необходимое для написания всех последовательных целых чисел от единицы до этого искомого трёхзначного числа (включительно).

ВверхВниз   Решение


Дан правильный 2n-угольник.
Докажите, что на всех его сторонах и диагоналях можно расставить стрелки так, чтобы сумма полученных векторов была нулевой.

ВверхВниз   Решение


Автор: Фольклор

Окружность проходит через вершины В и D параллелограмма АВСD и пересекает его стороны АВ, ВС, СD и DA в точках M, N, P и K соответственно. Докажите, что  MK || NP.

ВверхВниз   Решение


Автор: Фольклор

В равнобокой трапеции AВСD основания AD и ВС равны 12 и 6 соответственно, а высота равна 4. Сравните углы ВАС и САD.

ВверхВниз   Решение


Может ли число, записываемое при помощи 100 нулей, 100 единиц и 100 двоек, быть точным квадратом?

ВверхВниз   Решение


Докажите, что для каждого x такого, что sin x 0 , найдется такое натуральное n , что | sin nx| .

ВверхВниз   Решение


Автор: Сонкин М.

Окружность с центром O вписана в треугольник ABC и касается его сторон AB, BC и AC в точках E, F и D соответственно. Прямые AO и CO пересекают прямую EF в точках M и N. Докажите, что центр окружности, описанной около треугольника OMN, точка O и точка D лежат на одной прямой.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 48]      



Задача 109573  (#94.4.11.1)

Темы:   [ Тригонометрические неравенства ]
[ Выпуклость и вогнутость (прочее) ]
Сложность: 4+
Классы: 10,11

Докажите, что при всех $x$, $0 < x < \pi/3$, справедливо неравенство $\sin 2x + \cos x > 1$.
Прислать комментарий     Решение


Задача 109574  (#94.4.11.2)

Темы:   [ Принцип Дирихле (прочее) ]
[ Связность и разложение на связные компоненты ]
[ Индукция (прочее) ]
[ Степень вершины ]
Сложность: 4
Классы: 8,9,10,11

Автор: Гулько С.

В один из дней года оказалось, что каждый житель города сделал не более одного звонка по телефону. Докажите, что население города можно разбить не более чем на три группы так, чтобы жители, входящие в одну группу, не разговаривали в этот день между собой по телефону.

Прислать комментарий     Решение

Задача 108202  (#94.4.11.3)

Темы:   [ Три точки, лежащие на одной прямой ]
[ Конкуррентность высот. Углы между высотами. ]
[ Вспомогательная окружность ]
[ Вписанные и описанные окружности ]
[ Вписанный угол, опирающийся на диаметр ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4+
Классы: 8,9

Автор: Сонкин М.

Окружность с центром O вписана в треугольник ABC и касается его сторон AB, BC и AC в точках E, F и D соответственно. Прямые AO и CO пересекают прямую EF в точках M и N. Докажите, что центр окружности, описанной около треугольника OMN, точка O и точка D лежат на одной прямой.

Прислать комментарий     Решение

Задача 109576  (#94.4.11.4)

Темы:   [ Процессы и операции ]
[ Средние величины ]
[ Принцип крайнего (прочее) ]
Сложность: 4
Классы: 8,9,10,11

В вершинах выпуклого n-угольника расставлены m фишек  (m > n).  За один ход разрешается передвинуть две фишки, стоящие в одной вершине, в соседние вершины: одну – вправо, вторую – влево. Докажите, что если после нескольких ходов в каждой вершине n-угольника будет стоять столько же фишек, сколько и вначале, то количество сделанных ходов кратно n.

Прислать комментарий     Решение

Задача 60470  (#94.4.11.5)

Темы:   [ Простые числа и их свойства ]
[ Делимость чисел. Общие свойства ]
[ Арифметика остатков (прочее) ]
Сложность: 3-
Классы: 7,8,9

Найдите все простые числа, которые равны сумме двух простых чисел и разности двух простых чисел.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 48]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .