ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Туры:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи
В квадрате 3×3 расставлены числа (см. рис.). Известно, что
квадрат магический: сумма чисел в каждом столбце, в каждой строке и на каждой
диагонали одна и та же. Докажите, что |
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 45]
Пусть = , где – несократимая дробь.
На сторонах BC, AC и AB остроугольного треугольника ABC взяты точки A1, B1 и C1 так, что лучи A1A, B1B и С1C являются биссектрисами углов треугольника A1B1C1. Докажите, что AA1, BB1 и СС1 – высоты треугольника ABC.
От правильного октаэдра со стороной 1 отрезали шесть углов – пирамидок с квадратным основанием и ребром ⅓. Получился многогранник, грани которого – квадраты и правильные шестиугольники. Можно ли копиями такого многогранника замостить пространство?
В квадрате 3×3 расставлены числа (см. рис.). Известно, что
квадрат магический: сумма чисел в каждом столбце, в каждой строке и на каждой
диагонали одна и та же. Докажите, что
У ведущего есть колода из 52 карт. Зрители хотят узнать, в каком порядке лежат карты (при этом не уточняя сверху вниз или снизу вверх). Разрешается задавать ведущему вопросы вида "Сколько карт лежит между такой-то и такой-то картами?". Один из зрителей подсмотрел, в каком порядке лежат карты. Какое наименьшее число вопросов он должен задать, чтобы остальные зрители по ответам на эти вопросы могли узнать порядок карт в колоде?
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 45] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|