Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 16 задач
Версия для печати
Убрать все задачи

На доске записано произведение a1a2... a100, где a1, ..., a100 – натуральные числа. Рассмотрим 99 выражений, каждое из которых получается заменой одного из знаков умножения на знак сложения. Известно, что значения ровно 32 из этих выражений чётные. Какое наибольшее количество чётных чисел среди a1, a2, ..., a100 могло быть?

Вниз   Решение


Внутри выпуклого пятиугольника выбраны две точки. Докажите, что можно выбрать четырёхугольник с вершинами в вершинах пятиугольника так, что внутрь него попадут обе выбранные точки.

ВверхВниз   Решение


Найдите все пары чисел x,y (0;) , удовлетворяющие равенству sin x+ sin y= sin(xy) .

ВверхВниз   Решение


Каждая деталь конструктора "Юный паяльщик" – это скобка в виде буквы П, состоящая из трёх единичных отрезков. Можно ли из деталей этого конструктора спаять полный проволочный каркас куба 2×2×2, разбитого на кубики 1×1×1? (Каркас состоит из 27 точек, соединённых единичными отрезками; любые две соседние точки должны быть соединены ровно одним проволочным отрезком.)

ВверхВниз   Решение


Имеется семь стаканов с водой: первый стакан заполнен водой наполовину, второй – на треть, третий – на четверть, четвёртый – на ⅕, пятый – на ⅛, шестой – на 1/9, и седьмой – на 1/10. Разрешается переливать всю воду из одного стакана в другой или переливать воду из одного стакана в другой до тех пор, пока он не заполнится доверху. Может ли после нескольких переливаний какой-нибудь стакан оказаться заполненным   а) на 1/12;   б) на ⅙?

ВверхВниз   Решение


Окружность σ касается равных сторон AB и AC равнобедренного треугольника ABC и пересекает сторону BC в точках K и L . Отрезок AK пересекает σ второй раз в точке M . Точки P и Q симметричны точке K относительно точек B и C соответственно. Докажите, что описанная окружность треугольника PMQ касается окружности σ .

ВверхВниз   Решение


В треугольнике ABC  ( AB < BC)  точка I – центр вписанной окружности, M – середина стороны AC, N – середина дуги ABC описанной окружности.
Докажите, что  ∠IMA = ∠INB.

ВверхВниз   Решение


Даны  N ≥ 3  точек, занумерованных числами 1, 2, ..., N. Каждые две точки соединены стрелкой от меньшего номера к большему. Раскраску всех стрелок в красный и синий цвета назовем однотонной, если нет двух таких точек A и B, что от A до B можно добраться и по красным стрелкам, и по синим. Найдите количество однотонных раскрасок.

ВверхВниз   Решение


Числа a, b, c таковы, что уравнение  x³ + ax² + bx + c = 0  имеет три действительных корня. Докажите, что если  –2 ≤ a + b + c ≤ 0,  то хотя бы один из этих корней принадлежит отрезку  [0, 2].

ВверхВниз   Решение


Автор: Сонкин М.

Дан угол с вершиной B. Возьмём произвольную равнобедренную трапецию, боковые стороны которой лежат на сторонах данного угла. Через две противоположные её вершины проведём касательные к описанной около неё окружности. Через M обозначим точку пересечения этих касательных. Какую фигуру образуют все такие точки M?

ВверхВниз   Решение


Точки сторон правильного треугольника раскрашены в два цвета. Докажите, что найдётся прямоугольный треугольник с вершинами одного цвета.

ВверхВниз   Решение


В каждую клетку бесконечной клетчатой плоскости записано одно из чисел 1, 2, 3, 4 так, что каждое число встречается хотя бы один раз. Назовём клетку правильной, если количество различных чисел, записанных в четыре соседние (по стороне) с ней клетки, равно числу, записанному в эту клетку. Могут ли все клетки плоскости оказаться правильными?

ВверхВниз   Решение


Найдите все натуральные числа, имеющие ровно шесть делителей, сумма которых равна 3500.

ВверхВниз   Решение


Прямоугольник m×n разрезан на уголки:

Докажите, что разность между количеством уголков вида a и количеством уголков вида b делится на 3.

ВверхВниз   Решение


Пусть a1, a2, ..., a10 – натуральные числа,  a1 < a2 < ... < a10.  Пусть bk – наибольший делитель ak, меньший ak. Оказалось, что b1 > b2 > ... > b10.
Докажите, что  a10 > 500.

ВверхВниз   Решение


Уравнение  x² + ax + b = 0  имеет два различных действительных корня.
Докажите, что уравнение  x4 + ax³ + (b – 2)x² – ax + 1 = 0  имеет четыре различных действительных корня.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 8]      



Задача 109580  (#94.4.10.1)

Темы:   [ Обыкновенные дроби ]
[ Инварианты ]
[ НОД и НОК. Взаимная простота ]
[ Процессы и операции ]
Сложность: 4-
Классы: 7,8,9,10

Имеется семь стаканов с водой: первый стакан заполнен водой наполовину, второй – на треть, третий – на четверть, четвёртый – на ⅕, пятый – на ⅛, шестой – на 1/9, и седьмой – на 1/10. Разрешается переливать всю воду из одного стакана в другой или переливать воду из одного стакана в другой до тех пор, пока он не заполнится доверху. Может ли после нескольких переливаний какой-нибудь стакан оказаться заполненным   а) на 1/12;   б) на ⅙?

Прислать комментарий     Решение

Задача 109581  (#94.4.10.2)

Темы:   [ Возвратные уравнения ]
[ Квадратные уравнения. Теорема Виета ]
Сложность: 4-
Классы: 8,9,10

Уравнение  x² + ax + b = 0  имеет два различных действительных корня.
Докажите, что уравнение  x4 + ax³ + (b – 2)x² – ax + 1 = 0  имеет четыре различных действительных корня.

Прислать комментарий     Решение

Задача 108200  (#94.4.10.3)

Темы:   [ Описанные четырехугольники ]
[ Вспомогательная окружность ]
[ Вписанный угол, опирающийся на диаметр ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 4
Классы: 8,9

Автор: Сонкин М.

Окружность с центром O вписана в четырёхугольник ABCD и касается его непараллельных сторон BC и AD в точках E и F соответственно. Пусть прямая AO и отрезок EF пересекаются в точке K , прямая DO и отрезок EF – в точке N , а прямые BK и CN – в точке M . Докажите, что точки O , K , M и N лежат на одной окружности.
Прислать комментарий     Решение


Задача 109583  (#94.4.10.4)

Темы:   [ Геометрия на клетчатой бумаге ]
[ Деление с остатком ]
[ Подсчет двумя способами ]
[ Разные задачи на разрезания ]
Сложность: 4-
Классы: 7,8,9

Прямоугольник m×n разрезан на уголки:

Докажите, что разность между количеством уголков вида a и количеством уголков вида b делится на 3.

Прислать комментарий     Решение

Задача 60470  (#94.4.10.5)

Темы:   [ Простые числа и их свойства ]
[ Делимость чисел. Общие свойства ]
[ Арифметика остатков (прочее) ]
Сложность: 3-
Классы: 7,8,9

Найдите все простые числа, которые равны сумме двух простых чисел и разности двух простых чисел.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .