Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Автор: Фольклор

На координатной плоскости изображен график функции  y = ax² + c  (см. рисунок). В каких точках график функции  y = cx + a  пересекает оси координат?

Вниз   Решение


Сплав из золота и серебра массой 13 кг 850 г при полном погружении в воду вытеснил 900 г воды. Определить количество золота и серебра в этом сплаве, если известно, что плотность золота равна 19,3 кг/дм3, а серебра – 10,5 кг/дм3.

ВверхВниз   Решение


В квадрате n×n клеток бесконечной шахматной доски расположены n2 фишек, по одной фишке в каждой клетке. Ходом называется перепрыгивание любой фишкой через соседнюю по стороне фишку, непосредственно за которой следует свободная клетка. При этом фишка, через которую перепрыгнули, с доски снимается. Докажите, что позиция, в которой дальнейшие ходы невозможны, возникнет не ранее, чем через [] ходов.

ВверхВниз   Решение


Автор: Фольклор

Найдите наименьшее число, кратное 45, десятичная запись которого состоит только из единиц и нулей.

ВверхВниз   Решение


Решить в целых числах уравнение  9x + 2 = (y + 1)y.

ВверхВниз   Решение


Автор: Фольклор

На доске записаны числа 1, 21, 2², 2³, 24, 25. Разрешается стереть любые два числа и вместо них записать их разность – неотрицательное число.
Может ли на доске в результате нескольких таких операций остаться только число 15?

ВверхВниз   Решение


Каких точных квадратов, не превосходящих 1020, больше: тех, у которых семнадцатая с конца цифра – 7, или тех, у которых семнадцатая с конца цифра – 8?

ВверхВниз   Решение


Сумма цифр в десятичной записи натурального числа n равна 100, а сумма цифр числа 44n равна 800. Чему равна сумма цифр числа 3n ?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



Задача 108156  (#99.5.10.3)

Темы:   [ Вписанные и описанные окружности ]
[ Биссектриса делит дугу пополам ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Угол между касательной и хордой ]
[ Общая касательная к двум окружностям ]
[ Свойства биссектрис, конкуррентность ]
Сложность: 5+
Классы: 8,9,10

Автор: Сонкин М.

Пусть окружность, вписанная в треугольник ABC , касается его сторон AB , BC и AC в точках K , L и M соответственно. К окружностям, вписанным в треугольники BKL , CLM и AKM проведены попарно общие внешние касательные, отличные от сторон треугольника ABC . Докажите, что эти касательные пересекаются в одной точке.
Прислать комментарий     Решение


Задача 109694  (#99.5.10.4)

Темы:   [ Геометрия на клетчатой бумаге ]
[ Процессы и операции ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
Сложность: 6
Классы: 9,10,11

В квадрате n×n клеток бесконечной шахматной доски расположены n2 фишек, по одной фишке в каждой клетке. Ходом называется перепрыгивание любой фишкой через соседнюю по стороне фишку, непосредственно за которой следует свободная клетка. При этом фишка, через которую перепрыгнули, с доски снимается. Докажите, что позиция, в которой дальнейшие ходы невозможны, возникнет не ранее, чем через [] ходов.
Прислать комментарий     Решение


Задача 109695  (#99.5.10.5)

Темы:   [ Десятичная система счисления ]
[ Перебор случаев ]
Сложность: 4+
Классы: 7,8,9,10

Сумма цифр в десятичной записи натурального числа n равна 100, а сумма цифр числа 44n равна 800. Чему равна сумма цифр числа 3n ?
Прислать комментарий     Решение


Задача 108157  (#99.5.10.6)

Темы:   [ Вспомогательные подобные треугольники ]
[ Угол между касательной и хордой ]
[ Отношения линейных элементов подобных треугольников ]
[ Отрезок, видимый из двух точек под одним углом ]
[ Вспомогательная окружность ]
[ Вписанные четырехугольники (прочее) ]
[ Пересекающиеся окружности ]
[ Признаки и свойства параллелограмма ]
Сложность: 4
Классы: 8,9

В треугольнике ABC окружность, проходящая через вершины A и B, касается прямой BC, а окружность, проходящая через вершины B и C, касается прямой AB и второй раз пересекает первую окружность в точке K. Пусть O – центр описанной окружности треугольника ABC. Докажите, что угол BKO – прямой.

Прислать комментарий     Решение

Задача 109697  (#99.5.10.7)

Темы:   [ Неравенство Коши ]
[ Алгебраические неравенства (прочее) ]
[ Доказательство от противного ]
Сложность: 4
Классы: 8,9,10

Для некоторых положительных чисел x и y выполняется неравенство  x² + y³ ≥ x³ + y4.  Докажите, что  x³ + y³ ≤ 2.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .