ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи На координатной плоскости изображен график функции y = ax² + c (см. рисунок). В каких точках график функции y = cx + a пересекает оси координат? Сплав из золота и серебра массой 13 кг 850 г при полном погружении в воду вытеснил 900 г воды. Определить количество золота и серебра в этом сплаве, если известно, что плотность золота равна 19,3 кг/дм3, а серебра – 10,5 кг/дм3. В квадрате n×n клеток бесконечной шахматной доски расположены
n2 фишек, по одной фишке в каждой клетке. Ходом называется перепрыгивание
любой фишкой через соседнюю по стороне фишку,
непосредственно за которой следует свободная клетка.
При этом фишка, через которую перепрыгнули, с доски снимается. Докажите, что
позиция, в которой дальнейшие ходы невозможны, возникнет не ранее, чем через
[ Найдите наименьшее число, кратное 45, десятичная запись которого состоит только из единиц и нулей. Решить в целых числах уравнение 9x + 2 = (y + 1)y. На доске записаны числа 1, 21, 2², 2³, 24, 25. Разрешается стереть любые два числа и вместо них записать их разность – неотрицательное число. Каких точных квадратов, не превосходящих 1020, больше: тех, у которых семнадцатая с конца цифра – 7, или тех, у которых семнадцатая с конца цифра – 8? Сумма цифр в десятичной записи натурального числа n равна 100, а сумма цифр числа 44n равна 800. Чему равна сумма цифр числа 3n ? |
Страница: << 1 2 3 4 5 >> [Всего задач: 24]
Пусть окружность, вписанная в треугольник ABC , касается его сторон AB , BC и AC в точках K , L и M соответственно. К окружностям, вписанным в треугольники BKL , CLM и AKM проведены попарно общие внешние касательные, отличные от сторон треугольника ABC . Докажите, что эти касательные пересекаются в одной точке.
В квадрате n×n клеток бесконечной шахматной доски расположены
n2 фишек, по одной фишке в каждой клетке. Ходом называется перепрыгивание
любой фишкой через соседнюю по стороне фишку,
непосредственно за которой следует свободная клетка.
При этом фишка, через которую перепрыгнули, с доски снимается. Докажите, что
позиция, в которой дальнейшие ходы невозможны, возникнет не ранее, чем через
[
Сумма цифр в десятичной записи натурального числа n равна 100, а сумма цифр числа 44n равна 800. Чему равна сумма цифр числа 3n ?
В треугольнике ABC окружность, проходящая через вершины A и B, касается прямой BC, а окружность, проходящая через вершины B и C, касается прямой AB и второй раз пересекает первую окружность в точке K. Пусть O – центр описанной окружности треугольника ABC. Докажите, что угол BKO – прямой.
Для некоторых положительных чисел x и y выполняется неравенство x² + y³ ≥ x³ + y4. Докажите, что x³ + y³ ≤ 2.
Страница: << 1 2 3 4 5 >> [Всего задач: 24]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке