ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Имеются одна красная и k (k > 1) синих ячеек, а также колода из 2n карт, занумерованных числами от 1 до 2n. Первоначально вся колода лежит в произвольном порядке в красной ячейке. Из любой ячейки можно взять верхнюю карту и переложить её либо в пустую ячейку, либо поверх карты с номером, большим на единицу. При каком наибольшем n можно такими операциями переложить всю колоду в одну из синих ячеек? |
Страница: << 1 2 3 4 5 >> [Всего задач: 24]
Имеются одна красная и k (k > 1) синих ячеек, а также колода из 2n карт, занумерованных числами от 1 до 2n. Первоначально вся колода лежит в произвольном порядке в красной ячейке. Из любой ячейки можно взять верхнюю карту и переложить её либо в пустую ячейку, либо поверх карты с номером, большим на единицу. При каком наибольшем n можно такими операциями переложить всю колоду в одну из синих ячеек?
Пусть O – центр описанной окружности треугольника ABC. На сторонах AB и BC выбраны точки M и N соответственно, причём 2∠MON = ∠AOC. Докажите, что периметр треугольника MBN не меньше стороны AC.
Из промежутка (22n, 23n) выбрано 22n–1 + 1 нечётное число.
Многочлены P, Q и R с действительными коэффициентами, среди которых есть многочлен второй степени и многочлен третьей степени, удовлетворяют равенству P² + Q² = R². Докажите, что все корни одного из многочленов третьей степени – действительные.
Дан четырёхугольник ABCD, вписанный в окружность ω. Касательная к ω, проведённая через точку A, пересекает продолжение стороны BC за точку B в точке K, а касательная к ω, проведённая через точку B, пересекает продолжение стороны AD за точку A в точке M. Известно, что AM = AD и BK = BC. Докажите, что ABCD – трапеция.
Страница: << 1 2 3 4 5 >> [Всего задач: 24]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке