Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

Найдите все степени чисел 2, 3, 5, 6, 7, 11, 12, лежащие в промежутке от 1 до 10000 и выстройте их по порядку. Найдите среди них пары чисел, разность между которыми не превосходит 10.

Вниз   Решение


На предприятии трудятся 50000 человек. Для каждого из них сумма количества его непосредственных начальников и его непосредственных подчинённых равна 7. В понедельник каждый работник предприятия издаёт приказ и выдаёт копию этого приказа каждому своему непосредственному подчинённому (если такие есть). Далее, каждый день работник берёт все полученные им в предыдущий день приказы и либо раздаёт их копии всем своим непосредственным подчинённым, либо, если таковых у него нет, выполняет приказы сам. Оказалось, что в пятницу никакие бумаги по учреждению не передаются. Докажите, что на предприятии не менее 97 начальников, над которыми нет начальников.

ВверхВниз   Решение


Чтобы открыть сейф, нужно ввести код  – число, состоящее из семи цифр: двоек и троек. Сейф откроется, если двоек больше, чем троек, а код делится и на 3, и на 4. Придумайте код, открывающий сейф.

ВверхВниз   Решение


На доске $6\times6$ расставили шесть не угрожающих друг другу ладей. Затем каждое не занятое ладьёй поле покрасили по такому правилу: если ладьи, угрожающие этому полю, находятся от него на одинаковом расстоянии, то это поле закрашивают в красный цвет, а если на разном – то в синий цвет. Могли ли все не занятые поля оказаться
  а) красными;
  б) синими?

ВверхВниз   Решение


Найдите наименьшее натуральное n, для которого число nn не является делителем числа 2008!.

ВверхВниз   Решение


Докажите, что дробно-линейное отображение переводит каждую окружность или прямую линию снова в окружность или прямую линию.

ВверхВниз   Решение


Точка z против часовой стрелки обходит квадрат с вершинами –1 – i,  2 – i,  2 + 2i,  –1 + 2i.  Как при этом ведут себя точки
  a)  z2;   б)  z3;   в)  z–1?

ВверхВниз   Решение


На доске написаны несколько чисел. Известно, что квадрат каждого записанного числа больше произведения любых двух других записанных чисел. Какое наибольшее количество чисел может быть на доске?

ВверхВниз   Решение


Автор: Фольклор

Людоедом называется фантастическая шахматная фигура, которая может ходить как шахматный король – на соседнюю клетку по вертикали или горизонтали, но не может ходить по диагонали. Два людоеда стоят на противоположных угловых полях шахматной доски и начинают ходить по очереди. Людоеду, вставшему на клетку, где уже стоит другой людоед, разрешается им пообедать. Кто кого съест при правильной игре и как ему надо для этого играть?

ВверхВниз   Решение


Автор: Шабат Г.Б.

Бесконечная последовательность чисел xn определяется условиями:   xn+1 = 1 – |1 – 2xn|,  причём  0 ≤ x1 ≤ 1.
Докажите, что последовательность, начиная с некоторого места, периодическая  а) в том  б) и только в том случае, когда x1 рационально.

ВверхВниз   Решение


Докажите, что числа от 1 до 16 можно записать в строку, но нельзя записать по кругу так, чтобы сумма любых двух соседних чисел была квадратом натурального числа.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 32]      



Задача 109927  (#97.4.8.1)

Темы:   [ Принцип крайнего (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 6,7,8

Докажите, что числа от 1 до 16 можно записать в строку, но нельзя записать по кругу так, чтобы сумма любых двух соседних чисел была квадратом натурального числа.
Прислать комментарий     Решение


Задача 109923  (#97.4.8.2)

Темы:   [ Раскладки и разбиения ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Разбиения на пары и группы; биекции ]
[ Задачи с неравенствами. Разбор случаев ]
Сложность: 4-
Классы: 8,9

а) Имеются 300 яблок, любые два из которых различаются по весу не более чем в 2 раза.
Докажите, что их можно разложить в пакеты по два яблока так, чтобы любые два пакета различались по весу не более чем в 1,5 раза.

б) Имеются 300 яблок, любые два из которых различаются по весу не более чем в 3 раза.
Докажите, что их можно разложить в пакеты по четыре яблока так, чтобы любые два пакета различались по весу не более чем в 1,5 раза.

Прислать комментарий     Решение

Задача 108175  (#97.4.8.3)

Темы:   [ Правильный (равносторонний) треугольник ]
[ Вспомогательные равные треугольники ]
Сложность: 3+
Классы: 7,8,9

На сторонах AB и BC равностороннего треугольника ABC взяты точки D и K, а на стороне AC – точки E и M, причём  DA + AE = KC + CM = AB.
Докажите, что угол между прямыми DM и KE равен 60°.

Прислать комментарий     Решение

Задача 109930  (#97.4.8.4)

Темы:   [ Процессы и операции ]
[ Подсчет двумя способами ]
[ Задачи с неравенствами. Разбор случаев ]
Сложность: 4
Классы: 8,9,10

На предприятии трудятся 50000 человек. Для каждого из них сумма количества его непосредственных начальников и его непосредственных подчинённых равна 7. В понедельник каждый работник предприятия издаёт приказ и выдаёт копию этого приказа каждому своему непосредственному подчинённому (если такие есть). Далее, каждый день работник берёт все полученные им в предыдущий день приказы и либо раздаёт их копии всем своим непосредственным подчинённым, либо, если таковых у него нет, выполняет приказы сам. Оказалось, что в пятницу никакие бумаги по учреждению не передаются. Докажите, что на предприятии не менее 97 начальников, над которыми нет начальников.

Прислать комментарий     Решение

Задача 108176  (#97.4.8.5)

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Свойства биссектрис, конкуррентность ]
[ Покрытия ]
[ Неравенства для элементов треугольника (прочее) ]
Сложность: 4
Классы: 7,8,9

Докажите, что остроугольный треугольник полностью покрывается тремя квадратами, построенными на его сторонах как на диагоналях.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 32]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .