|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Этапы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Дан треугольник АВС и две прямые l1, l2. Через произвольную точку D на стороне АВ проводится прямая, параллельная l1, пересекающая АС в точке Е, и прямая, параллельная l2, пересекающая ВС в точке F. Построить точку D, для которой отрезок EF имеет наименьшую длину. Докажите, что два четырехугольника подобны тогда и только тогда, когда у них равны четыре соответственных угла и соответственные углы между диагоналями. В колоде 52 карты, по 13 каждой масти. Ваня вынимает из колоды по одной карте. Вынутые карты в колоду не возвращаются. Каждый раз перед тем, как вынуть карту, Ваня загадывает какую-нибудь масть. Докажите, что если Ваня каждый раз будет загадывать масть, карт которой в колоде осталось не меньше, чем карт любой другой масти, то загаданная масть совпадет с мастью вынутой карты не менее 13 раз. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 56]
Существуют ли такие n-значные числа M и N, что все цифры M – чётные, все цифры N – нечётные, каждая цифра от 0 до 9 встречается в десятичной записи M или N хотя бы один раз и M делится на N?
В параллелограмме ABCD точки M и N – середины сторон BC и CD соответственно. Могут ли лучи AM и AN делить угол BAD на три равные части?
Числа от 1 до 9 разместите в кружках фигуры (см. рис.) так, чтобы сумма четырёх чисел, находящихся в кружках-вершинах всех квадратов (их шесть), была постоянной.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 56] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|