Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 12 задач
Версия для печати
Убрать все задачи

Найдите все такие тройки натуральных чисел m, n и l, что  m + n = (НОД(m, n))²,  m + l = (НОД(m, l))²,  n + l = (НОД(n, l))².

Вниз   Решение


На плоскости дано конечное множество точек X и правильный треугольник T . Известно, что любое подмножество X' множества X , состоящее из не более 9 точек, можно покрыть двумя параллельными переносами треугольника T . Докажите, что все множество X можно покрыть двумя параллельными переносами T .

ВверхВниз   Решение


Автор: Митькин Д.

Найдите все четверки действительных чисел, в каждой из которых любое число равно произведению каких-либо двух других чисел.

ВверхВниз   Решение


Автор: Любшин Д.

В каждую клетку квадратной таблицы размера  (2n – 1)×(2n – 1)  ставится одно из чисел 1 или – 1. Расстановку чисел назовём удачной, если каждое число равно произведению всех соседних с ним (соседними считаются числа, стоящие в клетках с общей стороной). Найдите число удачных расстановок.

ВверхВниз   Решение


В турнире по теннису n участников хотят провести парные (двое на двое) матчи так, чтобы каждый из участников имел своим противником каждого из остальных ровно в одном матче. При каких n возможен такой турнир?

ВверхВниз   Решение


Два прямоугольных треугольника расположены на плоскости так, что их медианы, проведенные к гипотенузам, параллельны. Докажите, что угол между некоторым катетом одного треугольника и некоторым катетом другого треугольника вдвое меньше угла между их гипотенузами.

ВверхВниз   Решение


Часть подмножеств некоторого конечного множества выделена. Каждое выделенное подмножество состоит в точности из 2k элементов ( k – фиксированное натуральное число). Известно, что в каждом подмножестве, состоящем не более чем из (k+1)2 элементов, либо не содержится ни одного выделенного подмножества, либо все в нем содержащиеся выделенные подмножества имеют общий элемент. Докажите, что все выделенные подмножества имеют общий элемент.

ВверхВниз   Решение


Пусть a, b, c – положительные числа, сумма которых равна 1. Докажите неравенство:  

ВверхВниз   Решение


Даны два выпуклых многоугольника. Известно, что расстояние между любыми двумя вершинами первого не больше 1 , расстояние между любыми двумя вершинами второго также не больше 1, а расстояние между любыми двумя вершинами разных многоугольников больше, чем 1/ . Докажите, что многоугольники не имеют общих внутренних точек.

ВверхВниз   Решение


Проведем через основание биссектрисы угла A разностороннего треугольника ABC отличную от стороны BC касательную к вписанной в треугольник окружности. Точку ее касания с окружностью обозначим через Ka . Аналогично построим точки Kb и Kc . Докажите, что три прямые, соединяющие точки Ka , Kb и Kc с серединами сторон BC , CA и AB соответственно, имеют общую точку, причем эта точка лежит на вписанной окружности.

ВверхВниз   Решение


Докажите, что если два прямоугольных параллелепипеда имеют равные объемы, то их можно расположить в пространстве так, что любая горизонтальная плоскость, пересекающая один из них, будет пересекать и второй, причем по многоугольнику той же площади.

ВверхВниз   Решение


Найдите все углы α , для которых набор чисел sinα , sin2α , sin3α совпадает с набором cosα , cos2α , cos3α .

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 55]      



Задача 110138  (#03.4.9.8)

Темы:   [ Разные задачи на разрезания ]
[ Выпуклые многоугольники ]
[ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Индукция (прочее) ]
Сложность: 6-
Классы: 8,9,10,11

Докажите, что выпуклый многоугольник может быть разрезан непересекающимися диагоналями на остроугольные треугольники не более, чем одним способом.
Прислать комментарий     Решение


Задача 110125  (#03.4.10.1)

Темы:   [ Тригонометрические уравнения ]
[ Геометрические интерпретации в алгебре ]
[ Векторы помогают решить задачу ]
Сложность: 4-
Классы: 9,10,11

Найдите все углы α , для которых набор чисел sinα , sin2α , sin3α совпадает с набором cosα , cos2α , cos3α .
Прислать комментарий     Решение


Задача 108123  (#03.4.10.2)

Темы:   [ Две касательные, проведенные из одной точки ]
[ Вспомогательные равные треугольники ]
[ Вписанные и описанные окружности ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Три прямые, пересекающиеся в одной точке ]
Сложность: 4
Классы: 8,9

В равнобедренном треугольнике ABC  (AB = BC)  средняя линия, параллельная стороне BC, пересекается со вписанной окружностью в точке F, не лежащей на основании AC. Докажите, что касательная к окружности в точке F пересекается с биссектрисой угла C на стороне AB.

Прислать комментарий     Решение

Задача 110126  (#03.4.10.3)

Темы:   [ Разбиения на пары и группы; биекции ]
[ Задачи с ограничениями ]
[ Степень вершины ]
Сложность: 4
Классы: 8,9,10

На встречу выпускников пришло 45 человек. Оказалось, что любые двое из них, имеющие одинаковое число знакомых среди пришедших, не знакомы друг с другом. Какое наибольшее число пар знакомых могло быть среди участвовавших во встрече?

Прислать комментарий     Решение

Задача 110127  (#03.4.10.4)

Темы:   [ Биссектриса угла ]
[ Наименьший или наибольший угол ]
[ Поворот на $90^\circ$ ]
[ Поворот помогает решить задачу ]
Сложность: 4
Классы: 7,8,9,10

На плоскости отметили n  (n > 2)  прямых, проходящих через одну точку O таким образом, что для каждых двух из них найдётся такая отмеченная прямая, которая делит пополам одну из пар вертикальных углов, образованных этими прямыми. Докажите, что проведённые прямые делят полный угол на равные части.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 55]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .