Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 14 задач
Версия для печати
Убрать все задачи

На конференции присутствовали представители двух конкурирующих фирм “Индекс” и “Зугл” Алексей, Борис и Владимир. Представители одной и той же компании всегда говорят правду друг другу и врут конкурентам. Алексей сказал Борису: «Я из фирмы “Индекс”». Борис ответил: «О! Вы с Владимиром работаете в одной фирме!». Можно ли по этому диалогу определить, где работает Владимир?

Вниз   Решение


Даны две точки A и B. Найдите геометрическое место таких точек C, что точки A, B и C можно накрыть кругом единичного радиуса.

ВверхВниз   Решение


Внутри выпуклого четырехугольника с суммой длин диагоналей d расположен выпуклый четырехугольник с суммой длин диагоналей d'. Докажите, что d' < 2d.

ВверхВниз   Решение


  Этот метод позволяет решать произвольное уравнение 4-й степени путем сведения его к решению вспомогательного кубического уравнения и двух квадратных уравнений.
  а) Докажите, что любое уравнение 4-й степени можно привести к виду  x4 = Ax² + Bx + C.     (*)
  б) Введём действительный параметр α и перепишем уравнение (*) в виде  x4 + 2αx² + α² = (A + 2α)x² + Bx + (C + α²).     (**)
    Докажите, что для некоторого  α > – A/2  правая часть равенства (**) превращается в полный квадрат.
  в) Пользуясь равенством (**), опишите метод нахождения корней уравнения (*).

ВверхВниз   Решение


Решите задачу 13.44, используя свойства центра масс.

ВверхВниз   Решение


Автор: Храмцов Д.

Пусть I – точка пересечения биссектрис треугольника ABC . Обозначим через A' , B' , C' точки, симметричные точке I относительно сторон треугольника ABC . Докажите, что если окружность, описанная около треугольника A'B'C' , проходит через вершину B , то ABC = 60o .

ВверхВниз   Решение


Задан числовой массив А [1:m, 1:n]. Некоторый элемент этого массива назовем седловой точкой, если он является одновременно наименьшим в своей строке и наибольшим в своем столбце. Напечатать номера строки и столбца какой-нибудь седловой точки и напечатать число 0, если такой точки нет .

ВверхВниз   Решение


Докажите, что при простых  pi ≥ 5,  i = 1, 2, ..., 24,  число    делится нацело на 24.

ВверхВниз   Решение


В треугольнике ABC  ∠A = 60°.  Серединный перпендикуляр к отрезку AB пересекает прямую AC в точке C1. Серединный перпендикуляр к отрезку AC пересекает прямую AB в точке B1. Докажите, что прямая B1C1 касается вписанной окружности треугольника ABC.

ВверхВниз   Решение


На плоскости отметили n  (n > 2)  прямых, проходящих через одну точку O таким образом, что для каждых двух из них найдётся такая отмеченная прямая, которая делит пополам одну из пар вертикальных углов, образованных этими прямыми. Докажите, что проведённые прямые делят полный угол на равные части.

ВверхВниз   Решение


Дописать к 523... три цифры так, чтобы полученное шестизначное число делилось на 7, 8 и 9.

ВверхВниз   Решение


Внутри треугольника ABC взята точка M. Докажите, что  4S $ \leq$ AM . BC + BM . AC + CM . AB, где S — площадь треугольника ABC.

ВверхВниз   Решение


Можно ли разбить числа 1, 2, 3, ..., 33 на 11 групп, по три числа в каждой, так, чтобы в каждой группе одно из чисел равнялось сумме двух других?

ВверхВниз   Решение


По каждой из двух пересекающихся прямых с постоянными скоростями, не меняя направления, ползёт по жуку. Известно, что проекции жуков на ось OX никогда не совпадают (ни в прошлом, ни в будущем). Докажите, что проекции жуков на ось OY обязательно совпадут или совпадали раньше.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 8]      



Задача 110132  (#03.4.9.1)

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Исследование квадратного трехчлена ]
Сложность: 4-
Классы: 8,9,10

Докажите, что стороны любого неравнобедренного треугольника можно либо все увеличить, либо все уменьшить на одну и ту же величину так, чтобы получился прямоугольный треугольник.

Прислать комментарий     Решение

Задача 110140  (#03.4.9.2)

Темы:   [ Ортогональная (прямоугольная) проекция ]
[ Задачи на движение ]
Сложность: 3+
Классы: 7,8,9,10

По каждой из двух пересекающихся прямых с постоянными скоростями, не меняя направления, ползёт по жуку. Известно, что проекции жуков на ось OX никогда не совпадают (ни в прошлом, ни в будущем). Докажите, что проекции жуков на ось OY обязательно совпадут или совпадали раньше.

Прислать комментарий     Решение

Задача 108123  (#03.4.9.3)

Темы:   [ Две касательные, проведенные из одной точки ]
[ Вспомогательные равные треугольники ]
[ Вписанные и описанные окружности ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Три прямые, пересекающиеся в одной точке ]
Сложность: 4
Классы: 8,9

В равнобедренном треугольнике ABC  (AB = BC)  средняя линия, параллельная стороне BC, пересекается со вписанной окружностью в точке F, не лежащей на основании AC. Докажите, что касательная к окружности в точке F пересекается с биссектрисой угла C на стороне AB.

Прислать комментарий     Решение

Задача 110134  (#03.4.9.4)

Темы:   [ Признаки делимости на 11 ]
[ Выигрышные и проигрышные позиции ]
[ Деление с остатком ]
[ Периодичность и непериодичность ]
Сложность: 4
Классы: 8,9,10

Два игрока по очереди выписывают на доске в ряд слева направо произвольные цифры. Проигрывает игрок, после хода которого одна или несколько цифр, записанных подряд, образуют число, кратное 11. Кто из игроков победит при правильной игре?

Прислать комментарий     Решение

Задача 108124  (#03.4.9.5)

Темы:   [ Углы между биссектрисами ]
[ Вписанные и описанные окружности ]
[ Вписанные четырехугольники (прочее) ]
[ Свойства симметрий и осей симметрии ]
Сложность: 4+
Классы: 8,9

Автор: Храмцов Д.

Пусть I – точка пересечения биссектрис треугольника ABC . Обозначим через A' , B' , C' точки, симметричные точке I относительно сторон треугольника ABC . Докажите, что если окружность, описанная около треугольника A'B'C' , проходит через вершину B , то ABC = 60o .
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .