ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи На острове живут 100 рыцарей и 100 лжецов, у каждого из них есть хотя бы один друг. Рыцари всегда говорят правду, а лжецы всегда лгут. Однажды утром каждый житель произнес либо фразу "Все мои друзья – рыцари", либо фразу "Все мои друзья – лжецы", причем каждую из фраз произнесло ровно 100 человек. Найдите наименьшее возможное число пар друзей, один из которых рыцарь, а другой – лжец. Найдите все такие пары квадратных трёхчленов x² + ax + b, x² + cx + d, что a и b – корни второго трёхчлена, c и d – корни первого. Даны многочлены P(x), Q(x). Известно, что
для некоторого многочлена R(x, y) выполняется равенство
P(x) – P(y) = R(x, y)(Q(x) – Q(y)). Проведено три семейства параллельных прямых, по 10 прямых в каждом. Какое наибольшее число треугольников они могут вырезать из плоскости? Имеется 8 монет, 7 из которых – настоящие, которые весят одинаково, и одна фальшивая, отличающаяся по весу от остальных. Чашечные весы без гирь таковы, что если положить на их чашки равные грузы, то любая из чашек может перевесить, если же грузы различны по массе, то обязательно перетягивает чашка с более тяжелым грузом. Как за четыре взвешивания наверняка определить фальшивую монету и установить, легче она или тяжелее остальных? Дан треугольник A0B0C0 . На отрезке A0B0 отмечены точки A1 , A2, ,An , а на отрезке B0C0 – точки C1 , C2, , Cn , причём все отрезки AiCi+1 ( i=0,1, n-1 ), параллельны между собой и все отрезки CiAi+1 ( i=0,1, n-1 ) – тоже. Отрезки C0A1 , A1C2 , A2C1 и C1A0 ограничивают некоторый параллелограмм, отрезки C1A2 , A2C3 , A3C2 и C2A1 – тоже и т.д. Докажите, что сумма площадей всех n-1 получившихся параллелограммов меньше половины площади треугольника A0B0C0 .
Каждую вершину выпуклого четырехугольника площади S отразили симметрично относительно диагонали, не
содержащей эту вершину. Обозначим площадь получившегося четырехугольника через S' . Докажите, что
Двое игроков по очереди расставляют в каждой из 24 клеток поверхности куба 2×2×2 числа 1, 2, 3, 24 (каждое число можно ставить один раз). Второй игрок хочет, чтобы суммы чисел в клетках каждого кольца из 8 клеток, опоясывающего куб, были одинаковыми. Сможет ли первый игрок ему помешать? |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 32]
Двое игроков по очереди расставляют в каждой из 24 клеток поверхности куба 2×2×2 числа 1, 2, 3, 24 (каждое число можно ставить один раз). Второй игрок хочет, чтобы суммы чисел в клетках каждого кольца из 8 клеток, опоясывающего куб, были одинаковыми. Сможет ли первый игрок ему помешать?
В треугольнике ABC ( AB < BC) точка I – центр вписанной окружности, M – середина стороны AC, N – середина дуги ABC описанной окружности.
Известно, что сумма цифр натурального числа N равна 100, а сумма цифр числа 5N равна 50. Докажите, что N чётно.
Каждую вершину трапеции отразили симметрично относительно диагонали, не содержащей эту вершину.
Существует ли такая бесконечная возрастающая арифметическая прогрессия
{an} из натуральных чисел, что произведение
an...an+9 делится на сумму
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 32]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке