ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Вписанная окружность касается сторон AB и AC треугольника ABC в точках X и Y соответственно. Точка K– середина дуги AB описанной окружности треугольника ABC (не содержащей точки C). Оказалось, что прямая XY делит отрезок AK пополам. Чему может быть равен угол BAC? На вечеринку пришли 100 человек. Затем те, у кого не было знакомых среди
пришедших, ушли. Затем те, у кого был ровно один знакомый среди оставшихся, тоже ушли. Затем аналогично поступали те, у кого было ровно 2, 3, 4, ..., 99 знакомых среди оставшихся к моменту их ухода. Натуральное число n назовём хорошим, если каждое из чисел n, n + 1, n + 2 и n + 3 делится на сумму своих цифр. (Например, n = 60398 – хорошее.) На клетчатой бумаге нарисован прямоугольник 5x9. В левом нижнем углу стоит фишка. Коля и Серёжа по очереди передвигают ее на любое количество клеток либо вправо, либо вверх. Первым ходит Коля. Выигрывает тот, кто поставит фишку в правый верхний. Кто выигрывает при правильной игре? На двух клетках шахматной доски стоят чёрная и белая фишки. За один ход можно передвинуть любую из них на соседнюю по вертикали или горизонтали клетку (две фишки не могут стоять на одной клетке). Могут ли в результате таких ходов встретиться все возможные варианты расположения этих двух фишек, причём ровно по одному разу? На сторонах AB и AC треугольника ABC нашлись такие точки M и N, отличные от вершин, что MC = AC и NB = AB. Точка P симметрична точке A относительно прямой BC. Докажите, что PA является биссектрисой угла MPN. 300 бюрократов разбиты на три комиссии по 100 человек. Каждые два бюрократа либо знакомы друг с другом, либо незнакомы. Докажите, что найдутся два таких бюрократа из разных комиссий, что в третьей комиссии есть либо 17 человек, знакомых с обоими, либо 17 человек, незнакомых с обоими. Из колоды вынули семь карт, показали всем, перетасовали и раздали Грише и Лёше по три карты, а оставшуюся карту Пусть α и β – острые углы такие, что sin2α + sin2β < 1 . Докажите, что sin2α + sin2β < sin2(α + β) . Уравнение x² + ax + b = 0 имеет два различных действительных корня. Окружность S1, проходящая через вершины A и B треугольника ABC, пересекает сторону BC в точке D. Окружность S2, проходящая через вершины B и C, пересекает сторону AB в точке E и окружность S1 вторично в точке F. Оказалось, что точки A, E, D, C лежат на окружности S3 с центром O. Докажите, что угол BFO – прямой. Найдите все такие натуральные n, что при некоторых отличных от нуля действительных числах a, b, c, d многочлен (ax + b)1000 – (cx + d)1000 после раскрытия скобок и приведения всех подобных слагаемых имеет ровно n ненулевых коэффициентов. В каждую клетку бесконечной клетчатой плоскости записано одно из чисел 1, 2, 3, 4 так, что каждое число встречается хотя бы один раз. Назовём клетку правильной, если количество различных чисел, записанных в четыре соседние (по стороне) с ней клетки, равно числу, записанному в эту клетку. Могут ли все клетки плоскости оказаться правильными? |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 32]
В клетчатом квадрате 101×101 каждая клетка внутреннего квадрата 99×99 покрашена в один из десяти цветов (клетки, примыкающие к границе квадрата, не покрашены). Может ли оказаться, что в каждом квадрате 3×3 в цвет центральной клетки покрашена еще ровно одна клетка?
Медиану AA0 треугольника ABC отложили от точки A0 перпендикулярно стороне BC во внешнюю сторону треугольника. Обозначим второй конец построенного отрезка через A1. Аналогично строятся точки B1 и C1. Найдите углы треугольника A1B1C1, если углы треугольника ABC равны 30°, 30° и 120°.
При изготовлении партии из N ≥ 5 монет работник по ошибке изготовил две монеты из другого материала (все монеты выглядят одинаково). Начальник знает, что таких монет ровно две, что они весят одинаково, но отличаются по весу от остальных. Работник знает, какие это монеты и что они легче остальных. Ему нужно, проведя два взвешивания на чашечных весах без гирь, убедить начальника в том, что фальшивые монеты легче настоящих, и в том, какие именно монеты фальшивые. Может ли он это сделать?
Найдите какое-нибудь такое девятизначное число N, состоящее из различных цифр, что среди всех чисел, получающихся из N вычеркиванием семи цифр, было бы не более одного простого.
В каждую клетку бесконечной клетчатой плоскости записано одно из чисел 1, 2, 3, 4 так, что каждое число встречается хотя бы один раз. Назовём клетку правильной, если количество различных чисел, записанных в четыре соседние (по стороне) с ней клетки, равно числу, записанному в эту клетку. Могут ли все клетки плоскости оказаться правильными?
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 32]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке