Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 12 задач
Версия для печати
Убрать все задачи

Автор: Стунжас Л.

Существуют ли такие две функции  f и g, принимающие только целые значения, что для любого целого x выполнены соотношения:
  а)  f(f(x)) = x,  g(g(x)) = x,   f(g(x)) > x,  g(f(x)) > x?
  б)  f(f(x)) < x, g(g(x)) < x,   f(g(x)) > x,  g(f(x)) > x?

Вниз   Решение


Автор: Лифшиц А.

Существует ли такая последовательность натуральных чисел, чтобы любое натуральное число 1, 2, 3, ... можно было представить единственным способом в виде разности двух чисел этой последовательности?

ВверхВниз   Решение


а) Докажите, что при переходе от невыпуклого многоугольника к его выпуклой оболочке периметр уменьшается. (Выпуклой оболочкой многоугольника называют наименьший выпуклый многоугольник, его содержащий.)
б) Внутри выпуклого многоугольника лежит другой выпуклый многоугольник. Докажите, что периметр внешнего многоугольника не меньше, чем периметр внутреннего.

ВверхВниз   Решение


Натуральное число n разрешается заменить на число ab, если  a + b = n  и числа a и b натуральные.
Можно ли с помощью таких замен получить из числа 22 число 2001?

ВверхВниз   Решение


Автор: Фольклор

В комнате у Папы Карло на каждой стене висят часы, причём они все показывают неверное время: первые часы ошибаются на 2 минуты, вторые – на 3 минуты, третьи – на 4 минуты и четвёртые – на 5 минут. Однажды Папа Карло, выходя на улицу, решил узнать точное время и увидел такие показания часов: 14:54, 14:57, 15:02 и 15:03. Помогите Папе Карло определить точное время.

ВверхВниз   Решение


Докажите, что в любом треугольнике сумма медиан больше 3/4 периметра, но меньше периметра.

ВверхВниз   Решение


Имеется много кубиков одинакового размера, раскрашенных в шесть цветов. При этом каждый кубик раскрашен во все шесть цветов, каждая грань – в какой-нибудь один свой цвет, но расположение цветов на разных кубиках может быть различным. Кубики выложены на стол, так что получился прямоугольник. Разрешается взять любой столбец этого прямоугольника, повернуть его вокруг длинной оси и положить на место. То же самое разрешается делать и со строками. Всегда ли можно с помощью таких операций добиться того, что все кубики будут смотреть вверх гранями одного и того же цвета?

ВверхВниз   Решение


Автор: Охитин С.

На кольцевой автомобильной дороге стоят несколько одинаковых автомашин. Если бы весь бензин, имеющийся в этих автомашинах, слили в одну, то эта машина смогла бы проехать по всей кольцевой дороге и вернуться на прежнее место. Докажите, что хотя бы одна из этих машин может объехать всё кольцо, забирая по пути бензин у остальных машин.

ВверхВниз   Решение


Автор: Фомин Д.

Дано натуральное число M. Докажите, что существует число, кратное M, сумма цифр которого (в десятичной записи) нечётна.

ВверхВниз   Решение


На длинной скамейке сидели мальчик и девочка. К ним по одному подошли еще 20 детей, и каждый из них садился между какими-то двумя уже сидящими. Назовём девочку отважной, если она садилась между двумя соседними мальчиками, а мальчика – отважным, если он садился между двумя соседними девочками. Когда все сели, оказалось, что мальчики и девочки сидят на скамейке, чередуясь. Сколько из них были отважными?

ВверхВниз   Решение


В таблицу 29×29 вписали числа 1, 2, 3, ..., 29, каждое по 29 раз. Оказалось, что сумма чисел над главной диагональю в три раза больше суммы чисел под этой диагональю. Найдите число, вписанное в центральную клетку таблицы.

ВверхВниз   Решение


Середина одной из сторон треугольника и основания высот, опущенных на две другие стороны, образуют равносторонний треугольник.
Верно ли, что исходный треугольник тоже равносторонний?

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 111357  (#1)

Темы:   [ Числовые таблицы и их свойства ]
[ Комбинаторика (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3-
Классы: 8,9

Какое наибольшее число белых и чёрных фишек можно расставить на шахматной доске так, чтобы на каждой горизонтали и на каждой вертикали белых фишек было ровно в два раза больше, чем чёрных?

Прислать комментарий     Решение

Задача 111358  (#2)

Темы:   [ Тождественные преобразования ]
[ Процессы и операции ]
Сложность: 3-
Классы: 8,9

На бумажке записаны 1 и некоторое нецелое число x. За один ход разрешается записать на бумажку сумму или разность каких-нибудь двух уже записанных чисел или записать число, обратное к какому-нибудь из уже записанных чисел. Можно ли за несколько ходов получить на бумажке
число x²?

Прислать комментарий     Решение

Задача 111361  (#3)

Темы:   [ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Правильный (равносторонний) треугольник ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 8,9

Середина одной из сторон треугольника и основания высот, опущенных на две другие стороны, образуют равносторонний треугольник.
Верно ли, что исходный треугольник тоже равносторонний?

Прислать комментарий     Решение

Задача 111359  (#4)

Темы:   [ Числовые таблицы и их свойства ]
[ Арифметическая прогрессия ]
[ Принцип крайнего (прочее) ]
Сложность: 3
Классы: 8,9

В таблицу 29×29 вписали числа 1, 2, 3, ..., 29, каждое по 29 раз. Оказалось, что сумма чисел над главной диагональю в три раза больше суммы чисел под этой диагональю. Найдите число, вписанное в центральную клетку таблицы.

Прислать комментарий     Решение

Задача 111360  (#5)

Темы:   [ Кооперативные алгоритмы ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3
Классы: 8,9

Фокусник с завязанными глазами выдаёт зрителю пять карточек с номерами от 1 до 5. Зритель прячет две карточки, а три отдаёт ассистенту фокусника. Ассистент указывает зрителю на две из них, и зритель называет номера этих карточек фокуснику (в том порядке, в каком захочет). После этого фокусник угадывает номера карточек, спрятанных у зрителя. Как фокуснику и ассистенту договориться, чтобы фокус всегда удавался?

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .